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Actions
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Markovian dynamics

p(st+1|at, st, at�1, st�1, at�2, st�2, · · · ) = p(st+1|at, st)

Velocity

s� = [position]� s� =
�

position
velocity

⇥

at�2, st�2 � at�1, st�1 � at, st
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Tall orders

‣ Aim: maximise total future reward 

‣ i.e. we have to sum over paths through the 
future and weigh each by its probability 

‣ Best policy achieves best long-term reward

1X

t=1

rt
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Policy for this talk

‣ Pose the problem mathematically 
‣ Policy evaluation  
‣ Policy iteration 
‣ Monte Carlo techniques: experience samples 
‣ TD learning

Policy

UpdateEvaluate
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Evaluating a policy

‣ Aim: maximise total future reward 

‣ To know which is best, evaluate it first 
‣ The policy determines the expected reward 

from each state

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

1X

t=1

rt



Quentin HuysRL SWC

Discounting

‣ Given a policy, each state has an expected 
value 

‣ But: 

‣ Episodic 

‣ Discounted 
• infinite horizons 

• finite, exponentially distributed horizons
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Markov Decision Problems

This dynamic consistency is key to many solution approaches. 

It states that the value of a state s is related to 


the values of its successor states s’.

V ⇡(st) = E
" 1X

t0=1

rt0 |st = s,⇡

#

= E [r1| st = s,⇡] + E
" 1X

t=2

rt|st = s,⇡

#

= E [r1| st = s,⇡] + E [V ⇡(st+1)|st = s,⇡]
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Markov Decision Problems

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

r1 ⇠ R(s2, a1, s1)

E [r1|st = s,⇡] = E

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

p(at|st)

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

⇡(at, st)

2

4
X

st+1

T at
stst+1

R(st+1, at, st)

3

5
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Bellman equation

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

E [r1|st,⇡] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

R(st+1, a, st)

3

5

E [V ⇡(st+1),⇡, st] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

V ⇡(st+1)

3

5

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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Bellman Equation 

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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Bellman Equation 

All future

reward 


from state s

Immediate 
reward= E

All future 
reward

from 


next state s’

+

V ⇡(s) =
X

a
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Q values = state-action values

‣ so we can define state-action values as: 

‣ and state values are average state-action 
values:

Q(s, a) =
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

= E
� ⇥⇤

t=1

rt|s, a
⇥

V (s) =
�

a

�(a|s)Q(s, a)

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)
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Bellman Equation 

‣ to evaluate a policy, we need to solve the above 
equation, i.e. find the self-consistent state 
values 

‣ options for policy evaluation  
• exhaustive tree search - outwards, inwards, depth-first 
• value iteration: iterative updates 
• linear solution in 1 step 
• sampling

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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Solving the Bellman Equation 

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s⇥, a, s) + V (s⇥)]

⇥

⇥ v = R� + T�v
⇥ v� = (I�T�)�1R�

(w/ absorbing states)

O(|S|3)
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Solving the Bellman Equation 

V k+1(s) =
⇧

a

�(a, st)

⇤
⇧

s�

T a
ss�

�
R(s�, a, s) + V k(s�)

⇥
⌅

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s⇥, a, s) + V (s⇥)]

⇥

⇥ v = R� + T�v
⇥ v� = (I�T�)�1R�

(w/ absorbing states)

O(|S|3)
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Policy update

Given the value function for a policy, say via linear solution

Given the values V for the policy, we can improve the policy by always

choosing the best action:

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)

It is guaranteed to improve:

Q⇡(s,⇡0(s)) = max
a

Q⇡(s, a) � Q⇡(s,⇡(s)) = V⇡(s)
for deterministic policy

⇡0(a|s) =
⇢

1 if a = argmaxa Q⇡(s, a)
0 else
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Policy iteration

v� = (I�T�)�1R�

Policy evaluation

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else
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Policy iteration

v� = (I�T�)�1R�

Policy evaluation

greedy policy improvement

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else
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Policy iteration

v� = (I�T�)�1R�

V �(s) = max
a

�

s�

T a
ss� [Ra

ss + V �(s⇥)]

Policy evaluation

greedy policy improvement

Value iteration

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else
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Model-free solutions

‣ So far we have assumed knowledge of R and T 
• R and T are the ‘model’ of the world, so we assume full 

knowledge of the dynamics and rewards in the 
environment 

‣ What if we don’t know them?  
‣ We can still learn from state-action-reward 

samples 
• we can learn R and T from them, and use our 

estimates to solve as above 
• alternatively, we can directly estimate V or Q



Quentin HuysRL SWC

Solving the Bellman Equation 

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
Option 3: sampling

a =
X

k

f(xk)p(xk)

x(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions 
and average over them:
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Solving the Bellman Equation 

Option 3: sampling

this is an expectation over policy and transition samples.

a =
X

k

f(xk)p(xk)

x(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions 
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Solving the Bellman Equation 

Option 3: sampling

this is an expectation over policy and transition samples.

a =
X

k

f(xk)p(xk)

x(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions 
and average over them:

more about this later...
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Learning from samples

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

A new problem: exploration versus exploitation
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The effect of bootstrapping

B1

B1

B1

B1

B1

B1

B0

A0   B0

Markov (every visit) 

V(B)=3/4

V(A)=0

TD

V(B)=3/4

V(A)=~3/4

after Sutton and Barto 1998

‣ Average over various bootstrappings: TD(  )�



Quentin HuysRL SWC

Monte Carlo

‣ First visit MC 
• randomly start in all states, generate paths, average 

for starting state only 

‣ More efficient use of samples 
• Every visit MC 
• Bootstrap: TD 
• Dyna 
‣ Better samples 

• on policy versus off policy 
• Stochastic search, UCT...

V(s) = 1

N

X

i

(
TX

t0=1

rit0 |s0 = s

)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
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Update equation: towards TD

Bellman equation

V (s) =
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Not yet converged, so it doesn’t hold:

And then use this to update

V i+1(s) = V i(s) + dV (s)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
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TD learning

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
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TD learning

Sample
at � �(a|st)

st+1 � T at
st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
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TD learning

Sample
at � �(a|st)

st+1 � T at
st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

�t = �Vt�1(st) + rt + Vt�1(st+1)
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TD learning

V i+1(s) = V i(s) + dV (s)

Sample
at � �(a|st)

st+1 � T at
st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Vt(st) = Vt�1(st) + �⇥t

�t = �Vt�1(st) + rt + Vt�1(st+1)
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TD learning

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

�t = �Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + �⇥t
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Phasic dopamine neurone firing in 

Montague et al., 1996, Schultz et al., 1997

‣ Pavlovian conditioning
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Phasic signals in humans

D’Ardenne et al., 2008 Science; Zaghloul et al., 2009 Science

creased, there was a general increase in spike ac-
tivity, but this trend was also only marginally
significant (Fig. 4D) (20).

Our results show that differences in human
SN responses to positive and negative feed-
back are mainly driven by unexpected outcomes,
with no significant differences in neural activity
for outcomes that are anticipated according to
our model. By responding to unexpected fi-
nancial rewards, these putatively dopaminergic
cells encode information that probably helps par-
ticipants maximize reward in the probabilistic
learning task.

Our results address the important question
of whether extrapolating findings about the re-
ward properties of dopaminergic SN neurons from
nonhuman primates to humans is reasonable
(27). Whereas the role of midbrain dopaminer-
gic neurons in reward learning has been studied
extensively in animals (4–8, 15, 26), the evidence
presented here represents direct measurement of
SN neurons in humans who were engaged in a
probabilistic learning task. Our findings should
serve as a point of validation for animal models
of reward learning.

The reward for choosing the correct deck
in our study was a perceptual stimulus designed
to evoke a cognitive representation of finan-
cial reward. Primate studies, which often rely
on highly salient first-order reward stimuli

such as food and water, have demonstrated
that dopaminergic neurons are also capable
of responding to second-order associations (28),
which are items that can be used to directly
satisfy first-order needs. Because no monetary
compensation was directly provided, our ab-
stract rewards (i.e., images of second-order re-
wards) may be considered third-order. That the
modest third-order rewards used here elicited a
significant dopaminergic response, when they
were unexpected, suggests that SN activity may
play a more widespread role in reinforcement
learning than was previously thought.

Our findings suggest that neurons in the
human SN play a central role in reward-based
learning, modulating learning based on the dis-
crepancy between the expected and the realized
outcome (1, 2). These findings are consistent
with the hypothesized role of the basal ganglia,
including the SN, in addiction and other dis-
orders involving reward-seeking behavior (29).
More importantly, these findings are con-
sistent with models of reinforcement learning
involving the basal ganglia, and they suggest
a neural mechanism underlying reward learn-
ing in humans.
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Fig. 4. (A) Average z-scored spike rate for unexpected gains (blue trace) compared with unexpected
losses (black trace). The red line indicates feedback onset. The gray shaded region indicates the 225-msec
interval between 150 and 375 msec after feedback onset. Traces represent average activity from 15
SN cells recorded from 10 participants. (B) Average z-scored spike histograms for unexpected gains
(blue bars) compared to unexpected losses (black bars). The red vertical line indicates feedback
onset. Histograms represent average z-scored spike counts from the same 15 SN cells. (C) Average
z-scored spike rate for expected gains (blue trace) did not differ significantly from expected losses
(black trace) for any interval. The red line indicates feedback onset. (D) For every participant, the
median positive and negative trial-to-trial change in expected reward, as determined by Eq. 1, is
used to classify prediction error into large and small positive and negative differences. Mean z-scored
spike rate, captured between 150 and 375 msec after feedback onset for all cells, is shown for each
level of prediction error. Error bars represent SEM.
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and reduce partial volume effects [e.g. (19, 20)].
Second, brainstem structures are near large
pulsatile blood vessels that create physiological
movement artifacts and consequent magnetic
field inhomogeneities. We therefore acquired
functional data synchronized with the partici-
pants’ cardiac cycles so that these effects were
minimized (21). Third, image contrasts common-
ly used for anatomical localization (such as T1-
weighted images) are poorly suited to brainstem
studies because they do not provide contrast
between different brainstem nuclei. For the mid-
brain, several alternate pulse sequences have been
shown to produce desired contrast (22, 23). We
used proton-density weighted images to visualize
the substantia nigra (SN) and then used the SN
as a landmark to locate the VTA (22) (Fig. 1).
Finally, it has been shown that the brainstem does
not reliably align to standard brain templates used
for spatial normalization in the group analysis of
data.We used a new normalization algorithm that
significantly improves registration of the brain-
stem across participants (24).

We used these methods in two experiments
modeled on previous nonhuman primate studies
(25, 26) and motivated directly by the reward pre-
diction error theory of dopamine function (1, 2).
According to this theory, the firing rate of dopa-
mine neurons directly encodes the difference be-
tween expected and received reward. This assumes
that inputs to dopaminergic midbrain structures
relay both the reward experienced at a given time
and the reward expected at that time (27). Dopa-
mine neurons are thought to calculate the dif-
ference between these two inputs to produce a
reward prediction error signal (1, 2). Because the
BOLD response is thought to correlate most
strongly with synaptic current (28, 29), and
therefore is likely to reflect afferent input, the
BOLD response in midbrain dopaminergic struc-
tures could reflect several quantities: (i) current
reward, (ii) expected reward, or (iii) a sum of the
inputs equal to the reward prediction error (30).
We hypothesized that BOLD responses mea-
sured in midbrain dopaminergic structures would
reflect a reward prediction error.We positioned our
slices to incorporate the VTA and as much of the
SN (2, 31, 32) and VStr (33–37) as possible (38).

In our first experiment, we used a classical
conditioning procedure known to elicit responses
to unpredictable rewards and cues predicting re-
wards in the nonhuman primate dopamine sys-
tem (2). Thirsty human participants were trained
to expect a liquid reward at a fixed interval after
the display of a visual cue (35, 39, 40). After
training, delivery of the liquid reward was de-
layed in a subset of trials. This design allowed for
investigation of signals related to both positive
and negative reward prediction errors. Previous
studies indicate that the omission of reward at the
expected time generates a negative reward pre-
diction error (1, 25). Subsequently, when reward
is delivered at the untrained, delayed, time, its
delivery produces a positive reward prediction
error (1, 2, 25). We estimated a general linear

model (GLM) to look for deviations in the BOLD
response at times when positive and negative re-
ward prediction errors were expected (41).

The BOLD response in VTAwas significantly
related to positive (P < 0.05, two-sample t test cor-
rected for multiple comparisons) but not negative
reward prediction error signals (Fig. 2). TheBOLD
response in the VStr was significantly related to
negative reward prediction error signals (P< 0.05,
two-sample t test corrected for multiple compari-
sons) and also showed a nonsignificant trend
toward a relation with positive reward prediction

error signals (Fig. 3) (38). Post hoc analyses of the
mean event-related time courses in the VStr indi-
cated that BOLD responses were significantly en-
hanced by positive reward prediction errors (fig. S4).

If the BOLD response to positive reward pre-
diction errors in the striatum resulted at least in
part from activity in the VTA, then the responses
in the two structures should correlate with one
another. To test this prediction, we correlated the
BOLD response in these two regions after the
delivery of delayed, unexpected rewards. VTA
and VStr BOLD responses were positively
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CFig. 1. Localization of midbrain dopamine nuclei with MRI.
(A) The SN are located in the lateral portions of the mid-
brain, between the red nucleus and the cerebral peduncle.
The VTA flanks the midline, medial to the SN (3, 50). (B)
Midbrain dopamine nuclei are clearly visible on proton-
density weighted images; the midbrain is outlined in the box
and expanded in the rightmost image. An axial slice is
shown. The SN are the hyperintense areas adjacent to the
hypointense red nucleus and cerebral peduncle (22). The SN
are outlined with a dashed line and the VTA with a solid line
in the expanded view. (C) Slice placement for one partici-
pant. The midbrain was identified in the central sagittal slice
of the T1-weighted structural image. An oblique slab com-
prising axial/coronal slices (each slice 1.9 mm thick) was
centered on the VTA and tilted to include as much of the SN
and VStr as possible (38). The number of slices used was determined by the participant’s heart rate. (See
supporting online material for details of image acquisition.)
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positive reward prediction error signals (n = 18; P < 0.05, two-
sample t test corrected for multiple comparisons). The cluster
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regression coefficients (beta-weights from the GLM) for all voxels shown in (A). The VTA BOLD response to
an unexpected reward was significantly larger than the BOLD response to an expected reward (*P < 0.05,
two-sample t test corrected for multiple comparisons). The VTA BOLD response to a negative reward
prediction error was not significant (NS; P = 0.2671, two-sample t test).
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unconditioned stimulus delivery was contingent on the rat’s pres-
ence in the reward port during the cue (Fig. 1b). Thus, the critical  
difference between experimental groups is the predictability of the 
unconditioned stimulus during the compound phase; because of 
its prior association with the previously trained auditory cue, the 
unconditioned stimulus is expected for the blocking group, whereas, 
for the control group, its occurrence is unexpected. We measured 
conditioned responding as the amount of time spent in the reward 
port during the cue, normalized to an immediately preceding pre-cue 
period of equal length. Both groups showed equivalently high levels 
of conditioned behavior at the end of the single cue phase (two-way 
repeated-measures ANOVA, no effect of group or group × day inter-
action, all P values > 0.05), but differed in their performance when the 
compound cue was introduced (two-way repeated-measures ANOVA, 
main effect of group, F1,21 = 21.15, P < 0.001; group × day interaction, 
F3,63 = 11.63, P < 0.001), consistent with the fact that the association 
between the compound cue and unconditioned stimulus had to be 
learned by the control group (Fig. 1c).

To determine whether learning about the visual cue introduced dur-
ing compound training was affected by the predictability of reward, 
we assessed conditioned responding to unreinforced presentations of 
the visual cue alone 1 d later. Conditioned responding was reduced 
in the blocking group as compared with controls (two-way repeated-
measures ANOVA, main effect of group, F1,21 = 11.27, P = 0.003, no 
group × trial interaction, F2,42 = 1.29, P = 0.286; Fig. 1d,e), indicating 
that new learning about preceding environmental cues occurs after 
unpredicted, but not predicted, reward in this procedure, consistent 
with previous findings28,30.

Reward-paired dopamine neuron activation drives learning
Putative dopamine neurons recorded in monkeys are strongly acti-
vated by unexpected reward, but fail to respond to the same reward if 
it is fully predicted10,11, including when delivered in a blocking condi-
tion28. The close correspondence between dopamine neural activity 
and behavioral evidence of learning in this task suggests that posi-
tive RPEs caused by unexpected reward delivery activate dopamine 

 neurons and lead to learning observed under control conditions.  
To test this hypothesis, we optogenetically activated VTA dopamine 
neurons at the time of unconditioned stimulus delivery on com-
pound trials in our blocking task to drive learning under conditions 
in which learning normally does not occur. We used parameters that 
we have previously established elicit robust, time-locked activation 
of dopamine neurons and neurotransmitter release in anesthetized 
animals or in vitro preparations21. We predicted that phasic dopamine 
neuron activation delivered coincidently with fully-predicted reward 
would be sufficient to cause new learning about preceding cues.

Female transgenic rats expressing Cre recombinase under the con-
trol of the tyrosine hydroxylase (Th) promoter (Th-cre+ rats) and their 
wild-type littermates (Th-cre− rats) were used to gain selective control 
of dopamine neuron activity as described previously21. Th-cre+ and 
Th-cre− littermates received identical injections of a Cre-dependent 
virus expressing channelrhodopsin-2 (ChR2) in the VTA; chronic 
optical fiber implants were targeted dorsal to this region to allow for 
selective unilateral optogenetic dopamine neuron activation (Fig. 2a 
and Supplementary Fig. 1). Three groups of rats were trained under 
conditions that normally result in blocked learning to the light cue 
(cue X; Fig. 2b). The behavioral performance of an experimental 
group (PairedCre+) consisting of Th-cre+ rats that received optical 
stimulation (1-s train, 5-ms pulse, 20 Hz) paired with the uncondi-
tioned stimulus during compound training (see Online Methods) 
was compared to the performance of two control groups that received 
identical training, but differed either in genotype (PairedCre−) or 
the time at which optical stimulation was delivered (UnpairedCre+, 
optical stimulation during the intertrial interval, ITI; Fig. 2c). Groups 
performed equivalently during single cue and compound train-
ing (Fig. 2d), suggesting that all rats learned the task and that the  
optical stimulation delivered during compound training did not 
disrupt ongoing behavior (two-way repeated-measures ANOVA 
revealed no significant effect of group or group × day interaction, all  
P values > 0.111).

The critical comparison among groups occurred when the visual 
cue introduced during compound training was tested alone in an 

Figure 2 Dopamine neuron stimulation drives 
new learning. (a) Example histology from a  
Th-cre+ rat injected with a Cre-dependent  
ChR2-containing virus. Vertical track indicates 
optical fiber placement above VTA. Scale bar 
represents 1 mm. (b) Experimental design for 
blocking task with optogenetics. All groups 
received identical behavioral training according 
to the blocking group design shown in  
Figure 1a. (c) Optical stimulation (1-s train, 
5-ms pulse, 20 Hz, 473 nm) was synchronized 
with sucrose delivery in Paired (Cre+ and 
Cre−), but not Unpaired (Cre+), groups during 
compound training. (d) Performance across all 
single cue and compound training sessions. 
Inset, no group differences were observed over 
the last 4 d of single cue training or during 
compound training. (e) Performance during 
visual cue test. The PairedCre+ group exhibited 
increased responding to the cue relative to 
both control groups at test on the first trial 
(**P < 0.005). (f) Visual cue test performance 
for the first trial and all three trials averaged. 
The PairedCre+ group exhibited increased cue 
responding relative to controls for the one-trial measure (PairedCre+ versus UnpairedCre+, **P = 0.005; PairedCre+ versus PairedCre−, *P = 0.025; 
PairedCre− versus UnpairedCre+, P = 0.26); there was a trend for a group effect for the three-trial average (main effect of group, P = 0.055). Data are 
presented as means and error bars represent s.e.m.
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unconditioned stimulus delivery was contingent on the rat’s pres-
ence in the reward port during the cue (Fig. 1b). Thus, the critical  
difference between experimental groups is the predictability of the 
unconditioned stimulus during the compound phase; because of 
its prior association with the previously trained auditory cue, the 
unconditioned stimulus is expected for the blocking group, whereas, 
for the control group, its occurrence is unexpected. We measured 
conditioned responding as the amount of time spent in the reward 
port during the cue, normalized to an immediately preceding pre-cue 
period of equal length. Both groups showed equivalently high levels 
of conditioned behavior at the end of the single cue phase (two-way 
repeated-measures ANOVA, no effect of group or group × day inter-
action, all P values > 0.05), but differed in their performance when the 
compound cue was introduced (two-way repeated-measures ANOVA, 
main effect of group, F1,21 = 21.15, P < 0.001; group × day interaction, 
F3,63 = 11.63, P < 0.001), consistent with the fact that the association 
between the compound cue and unconditioned stimulus had to be 
learned by the control group (Fig. 1c).

To determine whether learning about the visual cue introduced dur-
ing compound training was affected by the predictability of reward, 
we assessed conditioned responding to unreinforced presentations of 
the visual cue alone 1 d later. Conditioned responding was reduced 
in the blocking group as compared with controls (two-way repeated-
measures ANOVA, main effect of group, F1,21 = 11.27, P = 0.003, no 
group × trial interaction, F2,42 = 1.29, P = 0.286; Fig. 1d,e), indicating 
that new learning about preceding environmental cues occurs after 
unpredicted, but not predicted, reward in this procedure, consistent 
with previous findings28,30.

Reward-paired dopamine neuron activation drives learning
Putative dopamine neurons recorded in monkeys are strongly acti-
vated by unexpected reward, but fail to respond to the same reward if 
it is fully predicted10,11, including when delivered in a blocking condi-
tion28. The close correspondence between dopamine neural activity 
and behavioral evidence of learning in this task suggests that posi-
tive RPEs caused by unexpected reward delivery activate dopamine 

 neurons and lead to learning observed under control conditions.  
To test this hypothesis, we optogenetically activated VTA dopamine 
neurons at the time of unconditioned stimulus delivery on com-
pound trials in our blocking task to drive learning under conditions 
in which learning normally does not occur. We used parameters that 
we have previously established elicit robust, time-locked activation 
of dopamine neurons and neurotransmitter release in anesthetized 
animals or in vitro preparations21. We predicted that phasic dopamine 
neuron activation delivered coincidently with fully-predicted reward 
would be sufficient to cause new learning about preceding cues.

Female transgenic rats expressing Cre recombinase under the con-
trol of the tyrosine hydroxylase (Th) promoter (Th-cre+ rats) and their 
wild-type littermates (Th-cre− rats) were used to gain selective control 
of dopamine neuron activity as described previously21. Th-cre+ and 
Th-cre− littermates received identical injections of a Cre-dependent 
virus expressing channelrhodopsin-2 (ChR2) in the VTA; chronic 
optical fiber implants were targeted dorsal to this region to allow for 
selective unilateral optogenetic dopamine neuron activation (Fig. 2a 
and Supplementary Fig. 1). Three groups of rats were trained under 
conditions that normally result in blocked learning to the light cue 
(cue X; Fig. 2b). The behavioral performance of an experimental 
group (PairedCre+) consisting of Th-cre+ rats that received optical 
stimulation (1-s train, 5-ms pulse, 20 Hz) paired with the uncondi-
tioned stimulus during compound training (see Online Methods) 
was compared to the performance of two control groups that received 
identical training, but differed either in genotype (PairedCre−) or 
the time at which optical stimulation was delivered (UnpairedCre+, 
optical stimulation during the intertrial interval, ITI; Fig. 2c). Groups 
performed equivalently during single cue and compound train-
ing (Fig. 2d), suggesting that all rats learned the task and that the  
optical stimulation delivered during compound training did not 
disrupt ongoing behavior (two-way repeated-measures ANOVA 
revealed no significant effect of group or group × day interaction, all  
P values > 0.111).

The critical comparison among groups occurred when the visual 
cue introduced during compound training was tested alone in an 

Figure 2 Dopamine neuron stimulation drives 
new learning. (a) Example histology from a  
Th-cre+ rat injected with a Cre-dependent  
ChR2-containing virus. Vertical track indicates 
optical fiber placement above VTA. Scale bar 
represents 1 mm. (b) Experimental design for 
blocking task with optogenetics. All groups 
received identical behavioral training according 
to the blocking group design shown in  
Figure 1a. (c) Optical stimulation (1-s train, 
5-ms pulse, 20 Hz, 473 nm) was synchronized 
with sucrose delivery in Paired (Cre+ and 
Cre−), but not Unpaired (Cre+), groups during 
compound training. (d) Performance across all 
single cue and compound training sessions. 
Inset, no group differences were observed over 
the last 4 d of single cue training or during 
compound training. (e) Performance during 
visual cue test. The PairedCre+ group exhibited 
increased responding to the cue relative to 
both control groups at test on the first trial 
(**P < 0.005). (f) Visual cue test performance 
for the first trial and all three trials averaged. 
The PairedCre+ group exhibited increased cue 
responding relative to controls for the one-trial measure (PairedCre+ versus UnpairedCre+, **P = 0.005; PairedCre+ versus PairedCre−, *P = 0.025; 
PairedCre− versus UnpairedCre+, P = 0.26); there was a trend for a group effect for the three-trial average (main effect of group, P = 0.055). Data are 
presented as means and error bars represent s.e.m.
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fire in bursts16,17 do alter learning, but suffer from similar problems, 
as the effect of dopamine neuron activity during specific behavioral 
events (such as reward delivery) cannot be evaluated. Other studies 
circumvented these issues by using optogenetic tools that permit tem-
porally precise control of dopamine neuron activity; however, these 
studies failed to utilize behavioral tasks that explicitly manipulate 
reward expectation18–21, involve natural rewards20,21 or are suitable 
for assessing cue-reward learning19. Thus, despite the prevalence and 
influence of the hypothesis that RPE signaling by dopamine neurons 
drives associative cue-reward learning, a direct link between the two 
has yet to be established.

To address this unresolved issue, we capitalized on the ability  
to selectively control the activity of dopamine neurons in the 
awake, behaving rat with temporally precise and neuron-specific  
optogenetic tools21–23 to simulate naturally occurring dopamine 
signals. We sought to determine whether activation of dopamine 
neurons in the VTA timed with the delivery of an expected reward 
would mimic a RPE and drive cue-reward learning using two distinct 
behavioral procedures.

First, we employed blocking, the associative phenomenon that 
best demonstrates the role of prediction errors in learning24–26.  
In a blocking procedure, the association between a cue and a reward 
is prevented (or blocked) if another cue present in the environment 
at the same time already reliably signals reward delivery27. It is gener-
ally argued that the absence of an RPE, supposedly encoded by the 
reduced or absent phasic dopamine response to the reward, prevents 
further learning about the redundant cue4,28. We reasoned that arti-
ficial VTA dopamine neuron activation paired with reward delivery 
would mimic a positive prediction error and facilitate learning about 
the redundant cue. Next, we tested the role of dopamine neuron acti-
vation during extinction learning. Extinction refers to the observed 
decrease in conditioned responding that results from the reduction or 
omission of an expected reward. The negative prediction error, which 
is supposedly encoded by a pause in dopamine neuron firing, is pro-
posed to induce extinction of behavioral responding4,29. We reasoned 
that artificial VTA dopamine neuron activation timed to coincide 
with the reduced or omitted reward would interfere with extinction 
learning. In both procedures, optogenetic activation of dopamine 

neurons at the time of expected reward delivery affected learning 
in a manner that was consistent with the hypothesis that dopamine 
neuron prediction error signaling drives associative learning.

RESULTS
Demonstration of associative blocking
The blocking procedure provides an illustration of the essential role of 
RPEs in associative learning. Consider two cues (for example, a tone 
and a light) presented simultaneously (in compound) and followed 
by reward delivery. It has been shown that conditioning to one ele-
ment of the compound is reduced (or blocked) if the other element 
has already been established as a reliable predictor of the reward24–27.  
In other words, despite consistent pairing between a cue and reward, 
the absence of a prediction error prevents learning about the redun-
dant cue. Consistent with the idea that dopamine neurons encode 
prediction errors, putative dopamine neurons recorded in vivo exhibit 
little to no reward-evoked responses in a blocking procedure28. The 
lack of dopamine neuron activity, combined with a failure to learn in 
the blocking procedure, is considered to be a key piece of evidence 
(albeit correlative) linking dopamine RPE signals to learning. On the 
basis of this evidence, we determined that the blocking procedure 
would provide an ideal environment in which to test the hypoth-
esis that RPE signaling by dopamine neurons can drive learning. 
According to this hypothesis, artificially activating dopamine neurons 
during reward delivery in the blocking condition, when dopamine 
neurons normally do not fire, should mimic a naturally occurring 
prediction error signal and allow subjects to learn about the otherwise 
blocked cue.

We first examined associative blocking of reward-seeking (Fig. 1) 
using parameters suitable for subsequent optogenetic neural manip-
ulation. Two groups of rats were initially trained to respond for a 
liquid sucrose reward (unconditioned stimulus) during an auditory 
cue in a single cue training phase. Subsequently, a combined audi-
tory and visual cue was presented in a compound training phase and 
the identical sucrose unconditioned stimulus was delivered. For sub-
jects assigned to the blocking group, the same auditory cue was pre-
sented during single and compound phases, whereas distinct auditory 
cues were used for control group subjects (Fig. 1a); in both phases, 
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Figure 1 Behavioral demonstration of the 
blocking effect. (a) Experimental design of the 
blocking task. A, cue A; X, cue X; AX, compound 
presentation of cues A and X; US, unconditioned 
stimulus. (b) During reinforced trials, sucrose 
delivery was contingent on reward port entry during 
the 30-s cue. After entry, sucrose was delivered for 
3 s, followed by a 2-s timeout. Up to six sucrose 
rewards could be earned per trial, depending on 
the rats’ behavior. (c) Performance across all single 
cue and compound training sessions. Inset, mean 
performance among groups over the last 4 d of 
single-cue training did not differ; controls showed 
reduced behavior during compound training  
(***P < 0.001). (d) Performance during visual 
cue test. The blocking group exhibited reduced 
responding to the cue at test, relative to controls 
(main effect of group, P = 0.003; group × trial 
interaction, P = 0.286). (e) Visual cue test 
performance for the first trial and the average of  
all three trials. The blocking group showed reduced 
cue responding for the three-trial measure  
(**P = 0.003), but were not different on the first 
trial (P = 0.095). Data are presented as means and 
error bars represent s.e.m.
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unconditioned stimulus delivery was contingent on the rat’s pres-
ence in the reward port during the cue (Fig. 1b). Thus, the critical  
difference between experimental groups is the predictability of the 
unconditioned stimulus during the compound phase; because of 
its prior association with the previously trained auditory cue, the 
unconditioned stimulus is expected for the blocking group, whereas, 
for the control group, its occurrence is unexpected. We measured 
conditioned responding as the amount of time spent in the reward 
port during the cue, normalized to an immediately preceding pre-cue 
period of equal length. Both groups showed equivalently high levels 
of conditioned behavior at the end of the single cue phase (two-way 
repeated-measures ANOVA, no effect of group or group × day inter-
action, all P values > 0.05), but differed in their performance when the 
compound cue was introduced (two-way repeated-measures ANOVA, 
main effect of group, F1,21 = 21.15, P < 0.001; group × day interaction, 
F3,63 = 11.63, P < 0.001), consistent with the fact that the association 
between the compound cue and unconditioned stimulus had to be 
learned by the control group (Fig. 1c).

To determine whether learning about the visual cue introduced dur-
ing compound training was affected by the predictability of reward, 
we assessed conditioned responding to unreinforced presentations of 
the visual cue alone 1 d later. Conditioned responding was reduced 
in the blocking group as compared with controls (two-way repeated-
measures ANOVA, main effect of group, F1,21 = 11.27, P = 0.003, no 
group × trial interaction, F2,42 = 1.29, P = 0.286; Fig. 1d,e), indicating 
that new learning about preceding environmental cues occurs after 
unpredicted, but not predicted, reward in this procedure, consistent 
with previous findings28,30.

Reward-paired dopamine neuron activation drives learning
Putative dopamine neurons recorded in monkeys are strongly acti-
vated by unexpected reward, but fail to respond to the same reward if 
it is fully predicted10,11, including when delivered in a blocking condi-
tion28. The close correspondence between dopamine neural activity 
and behavioral evidence of learning in this task suggests that posi-
tive RPEs caused by unexpected reward delivery activate dopamine 

 neurons and lead to learning observed under control conditions.  
To test this hypothesis, we optogenetically activated VTA dopamine 
neurons at the time of unconditioned stimulus delivery on com-
pound trials in our blocking task to drive learning under conditions 
in which learning normally does not occur. We used parameters that 
we have previously established elicit robust, time-locked activation 
of dopamine neurons and neurotransmitter release in anesthetized 
animals or in vitro preparations21. We predicted that phasic dopamine 
neuron activation delivered coincidently with fully-predicted reward 
would be sufficient to cause new learning about preceding cues.

Female transgenic rats expressing Cre recombinase under the con-
trol of the tyrosine hydroxylase (Th) promoter (Th-cre+ rats) and their 
wild-type littermates (Th-cre− rats) were used to gain selective control 
of dopamine neuron activity as described previously21. Th-cre+ and 
Th-cre− littermates received identical injections of a Cre-dependent 
virus expressing channelrhodopsin-2 (ChR2) in the VTA; chronic 
optical fiber implants were targeted dorsal to this region to allow for 
selective unilateral optogenetic dopamine neuron activation (Fig. 2a 
and Supplementary Fig. 1). Three groups of rats were trained under 
conditions that normally result in blocked learning to the light cue 
(cue X; Fig. 2b). The behavioral performance of an experimental 
group (PairedCre+) consisting of Th-cre+ rats that received optical 
stimulation (1-s train, 5-ms pulse, 20 Hz) paired with the uncondi-
tioned stimulus during compound training (see Online Methods) 
was compared to the performance of two control groups that received 
identical training, but differed either in genotype (PairedCre−) or 
the time at which optical stimulation was delivered (UnpairedCre+, 
optical stimulation during the intertrial interval, ITI; Fig. 2c). Groups 
performed equivalently during single cue and compound train-
ing (Fig. 2d), suggesting that all rats learned the task and that the  
optical stimulation delivered during compound training did not 
disrupt ongoing behavior (two-way repeated-measures ANOVA 
revealed no significant effect of group or group × day interaction, all  
P values > 0.111).

The critical comparison among groups occurred when the visual 
cue introduced during compound training was tested alone in an 

Figure 2 Dopamine neuron stimulation drives 
new learning. (a) Example histology from a  
Th-cre+ rat injected with a Cre-dependent  
ChR2-containing virus. Vertical track indicates 
optical fiber placement above VTA. Scale bar 
represents 1 mm. (b) Experimental design for 
blocking task with optogenetics. All groups 
received identical behavioral training according 
to the blocking group design shown in  
Figure 1a. (c) Optical stimulation (1-s train, 
5-ms pulse, 20 Hz, 473 nm) was synchronized 
with sucrose delivery in Paired (Cre+ and 
Cre−), but not Unpaired (Cre+), groups during 
compound training. (d) Performance across all 
single cue and compound training sessions. 
Inset, no group differences were observed over 
the last 4 d of single cue training or during 
compound training. (e) Performance during 
visual cue test. The PairedCre+ group exhibited 
increased responding to the cue relative to 
both control groups at test on the first trial 
(**P < 0.005). (f) Visual cue test performance 
for the first trial and all three trials averaged. 
The PairedCre+ group exhibited increased cue 
responding relative to controls for the one-trial measure (PairedCre+ versus UnpairedCre+, **P = 0.005; PairedCre+ versus PairedCre−, *P = 0.025; 
PairedCre− versus UnpairedCre+, P = 0.26); there was a trend for a group effect for the three-trial average (main effect of group, P = 0.055). Data are 
presented as means and error bars represent s.e.m.
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Markov Decision Problems

V (st) = E[rt + rt+1 + rt+2 + . . .]

= E[rt] + E[rt+1 + rt+2 + rt+3 . . .]

) V (st) = E[rt] + V (st+1)
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“Cached” solutions to MDPs

‣ Learn from experience
‣ If we have true values V, then this is true every 

trial:

‣ If it is not true (we don’t know true V), then we 
get an error:

‣ So now we can update with our experience

‣ This is an average over past experience

V (st) = E[rt] + V (st+1)

V (st) V (st) + ✏�

� = (E[rt] + V (st+1))� V (st) 6= 0
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SARSA

‣ Do TD for state-action values instead: 

‣ convergence guarantees - will estimate 

Q(st, at)⇥ Q(st, at) + �[rt + ⇥Q(st+1, at+1)�Q(st, at)]

st, at, rt, st+1, at+1

Q⇡(s, a)
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Q learning: off-policy 

‣ Learn off-policy 
• draw from some policy 
• “only” require extensive sampling 

‣ will estimate 

Q(st, at)⇥ Q(st, at) + �

�

⇤rt + ⇥ max
a
Q(st+1, a)

⌥ ⌃⇧ �
�Q(st, at)

⇥

⌅

update towards
optimum

Q⇤(s, a)
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MF and MB learning of V and Q values

That is, it is possible to use a model (T and R) to evaluate the expected reward of
performing an action in a state, or the expected reward of being in a state (i.e., col-
lapsing over possible actions).

Instrumental versus Pavlovian: The model-free/model-based distinction is inde-
pendent of the instrumental/Pavlovian distinction (Table 1). In instrumental learning,
subjects are reinforced for a stimulus–response combination, which is modeled using
state-action values Q s, að Þ. In Pavlovian conditioning experiments, stimuli are pre-
dictive of reward irrespective of the actions emitted by the subjects. These stimulus-
bound expectations are modeled using state values V sð Þ. Clearly, the latter begs the
question of how and why stimulus values elicit actions at all, and we will return to
this below. However, we emphasize both model-based and model-free approaches
can, in principle, be applied to either instrumental or Pavlovian scenarios. In other
words, there can be both cached, model-free Pavlovian values VMF sð Þ and instrumen-
tal values QMF s, að Þ and model-based Pavlovian values VMB sð Þ and instrumental
values QMB s, að Þ.

3 PHASIC DOPAMINE SIGNALS REPRESENT MODEL-FREE
PREDICTION ERRORS
The neural bases of model-based learning are not very clear, with only few direct
measurements of tree search available ( Johnson and Redish, 2007; Pfeiffer and
Foster, 2013; van der Meer and Redish, 2009). However, the neural representation
of prediction-error signals as required for model-free learning has been examined in
exacting detail (Montague et al., 1996; Schultz et al., 1997), and we turn to this
evidence next. It focuses on the dopamine neurons of the ventral tegmental area
(VTA) and, in a nutshell, suggests that dopamine neurons code some form of the
d term described earlier.

Dopaminergic involvement in reward learning has been studied with recordings
of the electrical activity of single neurons, voltammetry (Day et al., 2007) and neu-
roimaging in rodents, macaques, and humans. In now classical experiments (for re-
views, e.g., Daw and Tobler, 2013; Glimcher, 2011; Schultz, 1998, 2013),
dopamine neurons were found to respond with a burst of action potentials (duration
and latency of roughly 100 ms) to rewards such as small pieces of food hidden in a
box or to drops of cordial delivered through a spout. While rewards typically

Table 1 Types of values

Model-free Model-based

Pavlovian (state) values VMF sð Þ VMB sð Þ
Instrumental (state-action) values QMF s, að Þ QMB s, að Þ

There are both Pavlovian state and instrumental state-action values, and both of these can be either
model-free (cached) or model-based.

393 Phasic dopamine signals represent model-free prediction errors
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Solutions

‣ “Cached” learning 
• average experience 
• do again what worked in the past 
• averages are cheap to compute - no computational 

curse 
• averages move slowly 

‣ “Goal-directed” or “Model-based” decisions 
• Think through possible options and choose the best 
• Requires detailed model of the world 
• Requires huge computational resources 
• Learning = building the model, extracting structure

If you have an average over large number of subjects,  
it won’t move much if you add one more.
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MF and MB learning of V and Q values

That is, it is possible to use a model (T and R) to evaluate the expected reward of
performing an action in a state, or the expected reward of being in a state (i.e., col-
lapsing over possible actions).

Instrumental versus Pavlovian: The model-free/model-based distinction is inde-
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state-action values Q s, að Þ. In Pavlovian conditioning experiments, stimuli are pre-
dictive of reward irrespective of the actions emitted by the subjects. These stimulus-
bound expectations are modeled using state values V sð Þ. Clearly, the latter begs the
question of how and why stimulus values elicit actions at all, and we will return to
this below. However, we emphasize both model-based and model-free approaches
can, in principle, be applied to either instrumental or Pavlovian scenarios. In other
words, there can be both cached, model-free Pavlovian values VMF sð Þ and instrumen-
tal values QMF s, að Þ and model-based Pavlovian values VMB sð Þ and instrumental
values QMB s, að Þ.

3 PHASIC DOPAMINE SIGNALS REPRESENT MODEL-FREE
PREDICTION ERRORS
The neural bases of model-based learning are not very clear, with only few direct
measurements of tree search available ( Johnson and Redish, 2007; Pfeiffer and
Foster, 2013; van der Meer and Redish, 2009). However, the neural representation
of prediction-error signals as required for model-free learning has been examined in
exacting detail (Montague et al., 1996; Schultz et al., 1997), and we turn to this
evidence next. It focuses on the dopamine neurons of the ventral tegmental area
(VTA) and, in a nutshell, suggests that dopamine neurons code some form of the
d term described earlier.

Dopaminergic involvement in reward learning has been studied with recordings
of the electrical activity of single neurons, voltammetry (Day et al., 2007) and neu-
roimaging in rodents, macaques, and humans. In now classical experiments (for re-
views, e.g., Daw and Tobler, 2013; Glimcher, 2011; Schultz, 1998, 2013),
dopamine neurons were found to respond with a burst of action potentials (duration
and latency of roughly 100 ms) to rewards such as small pieces of food hidden in a
box or to drops of cordial delivered through a spout. While rewards typically

Table 1 Types of values

Model-free Model-based

Pavlovian (state) values VMF sð Þ VMB sð Þ
Instrumental (state-action) values QMF s, að Þ QMB s, að Þ

There are both Pavlovian state and instrumental state-action values, and both of these can be either
model-free (cached) or model-based.
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Pavlovian and instrumental 

‣ Pavlovian model-free learning:  

‣ Instrumental model-free learning:

Vt(s) = Vt�1(s) + ✏(rt � Vt�1(s))

Qt(a, s) = Qt�1(a, s) + ✏(rt �Qt�1(a, s))

p(a|s,V) / f(a,V(s)) p(a|s)
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Hirsch and Bolles 1980
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are quite sophisticated...
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Unconditioned responses

Hershberger 1986

•powerful
•inflexible over short timescale
•adaptive on evolutionary scale
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Models

Guitart-Masip et al., 2012 J Neurosci

‣ Instrumental
pt(a|s) / Qt(s, a)

Qt+1(s, a) = Qt(s, a) + ↵(rt �Qt(s, a))
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Models

Guitart-Masip et al., 2012 J Neurosci

‣ Instrumental + bias
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Models

Guitart-Masip et al., 2012 J Neurosci

‣ Instrumental + bias + Pavlovian
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Fault line 1: Balance of cached and g-d 

Daw et al. 2011, Neuron
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8. APPETITIVE-AVERSIVE INTERACTIONS 221

reported a similar demonstration of the blocking of aversive conditioning by
an attractive inhibitor.

The implication of the transreinforcer blocking experiment is that an at-
tractive inhibitor is functionally similar to an aversive excitor in its capacity
to modulate the aversive-reinforcement process. This parallel would, of
course, be strengthened if the similarity could be extended to other proper-
ties of aversive excitors. Wagner (1971) reported an experiment in which it
was found, using a rabbit eyelid-conditioning preparation, that when two
excitors are presented in compound and nonreinforced, more extinction oc-
curred to one stimulus if the other was a strong rather than a weak excitor.
This enhancement of extinction can also be demonstrated in conditioned
suppression (Dickinson, 197Q. One group of rats, Group P, received the
light, A, paired with shock in the first stage and the tone, X, also paired
with shock in second stage, as in condition I of Table 8.5. These two aver-
sive excitors were then presented in compound and nonreinforced in a third
stage. Finally, the residual amount of conditioning to X was measured on
tone-alone test trials. Control groups received exactly the same training ex-

cept during the first stage. In this stage, the light, A, was associated with
shock omission for the Group U, was semirandomly associated with shock

for Group R, and was not presented for Group no-CS. The enhancement of
aversive extinction is illustrated in Panel A of Fig. 8.7 by the fact that
Group P showed less suppression to the tone, X, than the control groups on
the test trials. Enhancement of extinction can be explained in the same terms

as blocking, by assuming that the amount of extinction occurring to a CS is
a positive function of the level of arousal of the aversive system at the time
the CS is presented (Konorski, 1948; Rescorla, 1973). Simultaneous presen-

tation of another aversive excitor just increases this level.

TABLE 8.5
Enhancement of aversive extinction

('onditions Stage I Stoge 2 Stoge 3

R NO.CS U U R NO-CS P

GROUPS
FIG' 8.6. Brocking of aversive condirioning: Mean suppression ratios to added ele-
ment x on test. Paner A: Blocking when A established as aversive excitor in Group p.
values estimated from graphic data presented by Rescorra (1971) for first session of
testing, Panel B.' Blocking when A established as attractive inhibitor in Group U. p:
paired groups; U: unpaired groups; R; random groups; no_CS: no-CS groups.

returned and pressing reestablished. In stage 2 the light, A, was com_
pounded with a novel 300GHztone, X, and the compound paired with a
0.5-ma 0.5-sec shock for 6 trials. Finally the amount of suppiession condi-
tioned to the tone was measured by presenting it alone on i-t"rt trials. The
control groups received exactly the same training except during the ap.
petitive conditioning stage. All control animals expeiienced Ih, ,urn.
clicker-food pairings as Group U. The differences were that the light was
semirandomly associated with food for Group R, paired with food for
Group P, and not presented at all during this itage ior Group no-cs.

Panel B of Fig. 8.6 illustrates the suppression maintained by the tone, x,
on the test trials. The tone maintained less aversive conditioning or suppres-
sion in Group U, for whom the light, A, was estabrished as a-potentiar at-
tractive inhibitor than in the control groups., An overall analysis of test sup
pression ratios showed that there was a significant differente between the
groups (p ( o.os); and individual comparilns by the Newman-Keuls pro-
cedure revealed that Group U was significantly less suppressed than both
Groups P and no-cS (p < 0.05 in both cases). Fowler (in press) has recentry
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cliliorrirrg, orrt.rrrighl lr:rvc t.rpct.tt.tl lltc P:rrrcrl Ironl) to sltow rrrrrrt.\rrIl)t(.,,:,tolt lrr \ llriur tlrr.
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d+ 5hscl(
control treatments
A+ food ommission

X- shock AX
X* shock AX
X+ shock AX

X
X
X

In the next experiment, Dickinson (1976) attempted to find out whether
an attractive inhibitor would similarly enhance aversive extinction by com-
paring conditions 2 and 3 of rable 8.5. Again after lever pressing had been
initially established, paired, unpaired, random, and no-CS groups were run,
rrsing cxactly the same classical appetitive conditioning schedules during
stagc I as cmploycd in thc transreinforcer blocking experiment. As a result,
tlrc light, A, should havt'bccorrrc an allractive inhibitor in Croup U.
'l'hcrcal'lcr, lhc prrrccdrlrc, lirllowcrl llral lor llrc crrhalrcclncnl ol' lhc

Value matters - transreinforcer blocking
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central system activated by an excitor. The alternative view (Konorski, 1967)
is that an excitatory association is formed between the CS representation
and some other central mechanism-an "antidrive" center or "no-LJS"
unit-whose arousal in turn leads to the inhibition of the excitatory system.
This is no place to go into Konorski's reasons for finally prefering the
second view, and for the present purposes it is only important to note that,
according to both models, the effect of an inhibitory stimulus is the
presence of an inhibitory influence on the relevant motivational system. Fig.
8.5 illustrates the path of such an influence for an attractive inhibitor, with
the question mark leaving open the actual associative structure of path.

In the absence of any excitatory influence on the appetitive and aversive
systems, presentation of an attractive inhibitor, for example, will be without
an effect. However, if both systems are under an excitatory influence, their
potential levels of arousal will be reduced by mutual inhibition. If we now
present an attractive inhibitor, the level of activity in the appetitive system
will be reduced and correspondingly the level of activity in the aversive
system increased. As far as the excitatory functions of the aversive system
are concerned, the presentation of an attractive inhibitor should be func-
tionally equivalent to that of an aversive excitor (see Fig. 8.5).

What we now need is a procedure with which to test this prediction.
Kamin (1969) demonstrated that if a stimulus, A, was paired with shock

ove15r'/e excrtor ottr6q1lv" rnh,b tor ottroctrve excrtor
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before aversive conditioning to a compound stimulus, AX, in a conditioned-
suppression procedure, the amount of conditioning accruing to X was
reduced or blocked. (See conditions I and 2 of Table 8.4.) This
phenomenon of blocking can be illustrated by considering two further
groups run by Rescorla (1971). In addition to groups receiving A, a tone,
and shock unpaired (Group tI) and randomly related (Group R) in stage 1,
Rescorla also ran groups that received either A and shock paired to establish
A an an aversive excitor (Group P), or no preexposure to A (Group no-CS)
before aversive conditioning to the AX compound in stage 2. Panel A of
Fig. 8.6 illustrates the suppression maintained by X alone during the first
test session. Less aversive conditioning accrued to X in Group P (condition
I of Table 8.4) than in Group R and Group no-CS (condition 2 of Table
8.4). Blocking can be explained if it is assumed that the amount of condi-
tioning to a CS is positively related to the difference between the level of
arousal of the aversive system when the shock is presented and during the
CS (Konorski, 1948; Rescorla, 1973). Presentation of the pretrained aversive
excitor, A, during conditioning to AX decreases this discrepancy, and hence
the amount of conditioning to X.

TABLE 8.4
Blocking of aversive conditioning

Oonditions Stage I Stage 2 test

FlG. 8.5. Illustralion ol thc cllccl ()l iur irttr:r(tivc irrlribitor orr llrt'opporrcnt l)l(x('ss
syslcrn un(lcr llrr coltctrrrcrrl irrlltrt.tttt.()l itllt;lrllvr irrrtl lrvtrsive cxeilor:. €: rx
cilltltlly (olur(li()n, l: irrlrilrrlory r'otlrr.r liorr: 'l rrrr,.pcr rlrul p;rllrs (sr'c lrxl); > > >'
Ittileti0tt:tllv cr;rrrv:rlt'rrl ('x( tlitlotv rrrllrrr.rrr r. (.,r.{. tr.\t)

A+ shock
control treatments
traf66d ommission

AX..* shock
AX- shock
AX+ shock

X
X
X

In many ways this procedure provides an ideal way of testing the func-
tional equivalence of an aversive excitor and attractive inhibitor. If such an
equivalence exists, an attractive inhibitor should also be capable of blocking
aversive conditioning by a shock. The presentation of both shock and food
during the conditioned-suppression procedure will ensure the concurrent
arousal of both the appetitive and aversive systems during presentation of
the inhibitor. To test this prediction, Dickinson (1976) initially trained rats
to lever press for food on a variable-interval schedule with a mean of 2 min.
'Ihe lever was then withdrawn and classical appetitive conditioning ad-
rninistered. Stimulus A, a 3Gsec overhead light, was established as a poten-
tial attractive inhibitor for Group U by associating it with the omission of
lood, as in stage I of condition 3 in Table 8.4. This was done by intermixing
prcsentation of a 30-sec clicker, during which free food was delivered on a
variablc-timc schedule with a mean of 7.5 sec, with nonreinforced presenta-
tions ol'a clickcr-light compound. Alter 8 sessions, each containing 5 rein-
lirrcerl clickcr arrcl 5 rrorrrcirrlilrccd clickcr lighl prcscntalions, thc lcvcr was
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dopamine release in the nucleus accumbens (see Fig. 3), differ in
whether they are prone to learn a sign-tracking or goal-tracking CR,
but they still develop patterns of dopamine release specific to that CR.
Therefore, it appears that different mechanisms control basal dopa-
mine neurotransmission versus the unique pattern of dopamine
responsiveness to a reward cue.

The neural mechanisms underlying sign- and goal-tracking beha-
viour remain to be elucidated. Here we have shown that stimulus–
reward associations that produce different CRs are mediated by
different neural circuitry. Previous research using site-specific dopa-
mine antagonism21 and dopamine-specific lesions22 indicated that
dopamine acts in the nucleus accumbens core to support the learning
and performance of sign-tracking behaviour. This work demonstrates
that dopamine-encoded prediction-error signals are indeed present in
the nucleus accumbens of sign-trackers, but not in the nucleus accum-
bens of goal-trackers. Although these neurochemical data alone do not
rule out the possibility that prediction-error signals are present in other
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Figure 3 | Conditional responses and phasic dopamine signalling in
response to CS and US presentation in outbred rats. Phasic dopamine release
was recorded in the core of the nucleus accumbens using FSCV across six days
of training. a, b, Behaviour directed towards the lever-CS (sign-tracking)
(a) and behaviour directed towards the food-tray (goal-tracking) (b) during
conditioning. Learning was evident in both groups because there was a
significant effect of session both for rats that learned a sign-tracking response
(n 5 6; session effect on lever contacts: F(5,25) 5 11.85, P 5 0.0001) and for rats
that learned a goal-tracking response (n 5 5; session effect on food-receptacle
contacts: F(5,20) 5 3.09, P 5 0.03). c, e, Change in dopamine concentration
(mean 1 s.e.m.) in response to CS and US presentation for each session of
conditioning. d, f, Change in peak amplitude (mean 1 s.e.m.) of the dopamine
signal observed in response to CS and US presentation for each session of
conditioning. (Bonferroni post-hoc comparison between CS- and US-evoked
dopamine release: *P , 0.05; **P , 0.01). Panels c and d demonstrate that
animals developing a sign-tracking CR (n 5 6) show increasing phasic
dopamine responses to CS presentation and decreasing responses to US
presentation consistent with bHR rats. Panels e–f demonstrate that animals
developing a goal-tracking CR (n 5 5) maintain phasic responses to US
presentation consistent with bLR rats.
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Figure 4 | Dopamine is necessary for learning CS–US associations that lead
to sign-tracking, but not goal-tracking. a–c, The effects of flupenthixol on
sign-tracking. a, Probability of approaching the lever-CS. b, Number of
contacts with the lever-CS. c, Latency to contact the lever-CS. d–f, The effects of
flupenthixol on goal-tracking. d, Probability of approaching the food-tray
during lever-CS presentation. e, Number of contacts with the food-tray during
lever-CS presentation. f, Latency to contact the food-tray during lever-CS
presentation. Data are expressed as mean 1 s.e.m. Flupenthixol (sessions 1–7)
blocked the performance of both sign-tracking and goal-tracking CRs. To
determine whether flupenthixol influenced performance or learning of a CR,
behaviour was examined following a saline injection on session 8 for all rats.
bLR rats that were treated with flupenthixol before sessions 1–7 (n 5 16)
responded similarly to the bLR saline group (n 5 10) on all measures of goal-
tracking behaviour on session 8, whereas bHR rats treated with flupenthixol
(n 5 22) differed significantly from the bHR saline group (n 5 10) on session 8
(*P , 0.01, saline versus flupenthixol). Thus, bLR rats learned the CS–US
association that produced a goal-tracking CR even though the drug prevented
the expression of this behaviour during training. Parenthetically, bHR rats
treated with flupenthixol did not develop a goal-tracking CR.
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dopamine release in the nucleus accumbens (see Fig. 3), differ in
whether they are prone to learn a sign-tracking or goal-tracking CR,
but they still develop patterns of dopamine release specific to that CR.
Therefore, it appears that different mechanisms control basal dopa-
mine neurotransmission versus the unique pattern of dopamine
responsiveness to a reward cue.

The neural mechanisms underlying sign- and goal-tracking beha-
viour remain to be elucidated. Here we have shown that stimulus–
reward associations that produce different CRs are mediated by
different neural circuitry. Previous research using site-specific dopa-
mine antagonism21 and dopamine-specific lesions22 indicated that
dopamine acts in the nucleus accumbens core to support the learning
and performance of sign-tracking behaviour. This work demonstrates
that dopamine-encoded prediction-error signals are indeed present in
the nucleus accumbens of sign-trackers, but not in the nucleus accum-
bens of goal-trackers. Although these neurochemical data alone do not
rule out the possibility that prediction-error signals are present in other
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Figure 3 | Conditional responses and phasic dopamine signalling in
response to CS and US presentation in outbred rats. Phasic dopamine release
was recorded in the core of the nucleus accumbens using FSCV across six days
of training. a, b, Behaviour directed towards the lever-CS (sign-tracking)
(a) and behaviour directed towards the food-tray (goal-tracking) (b) during
conditioning. Learning was evident in both groups because there was a
significant effect of session both for rats that learned a sign-tracking response
(n 5 6; session effect on lever contacts: F(5,25) 5 11.85, P 5 0.0001) and for rats
that learned a goal-tracking response (n 5 5; session effect on food-receptacle
contacts: F(5,20) 5 3.09, P 5 0.03). c, e, Change in dopamine concentration
(mean 1 s.e.m.) in response to CS and US presentation for each session of
conditioning. d, f, Change in peak amplitude (mean 1 s.e.m.) of the dopamine
signal observed in response to CS and US presentation for each session of
conditioning. (Bonferroni post-hoc comparison between CS- and US-evoked
dopamine release: *P , 0.05; **P , 0.01). Panels c and d demonstrate that
animals developing a sign-tracking CR (n 5 6) show increasing phasic
dopamine responses to CS presentation and decreasing responses to US
presentation consistent with bHR rats. Panels e–f demonstrate that animals
developing a goal-tracking CR (n 5 5) maintain phasic responses to US
presentation consistent with bLR rats.
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Figure 4 | Dopamine is necessary for learning CS–US associations that lead
to sign-tracking, but not goal-tracking. a–c, The effects of flupenthixol on
sign-tracking. a, Probability of approaching the lever-CS. b, Number of
contacts with the lever-CS. c, Latency to contact the lever-CS. d–f, The effects of
flupenthixol on goal-tracking. d, Probability of approaching the food-tray
during lever-CS presentation. e, Number of contacts with the food-tray during
lever-CS presentation. f, Latency to contact the food-tray during lever-CS
presentation. Data are expressed as mean 1 s.e.m. Flupenthixol (sessions 1–7)
blocked the performance of both sign-tracking and goal-tracking CRs. To
determine whether flupenthixol influenced performance or learning of a CR,
behaviour was examined following a saline injection on session 8 for all rats.
bLR rats that were treated with flupenthixol before sessions 1–7 (n 5 16)
responded similarly to the bLR saline group (n 5 10) on all measures of goal-
tracking behaviour on session 8, whereas bHR rats treated with flupenthixol
(n 5 22) differed significantly from the bHR saline group (n 5 10) on session 8
(*P , 0.01, saline versus flupenthixol). Thus, bLR rats learned the CS–US
association that produced a goal-tracking CR even though the drug prevented
the expression of this behaviour during training. Parenthetically, bHR rats
treated with flupenthixol did not develop a goal-tracking CR.
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dopamine release in the nucleus accumbens (see Fig. 3), differ in
whether they are prone to learn a sign-tracking or goal-tracking CR,
but they still develop patterns of dopamine release specific to that CR.
Therefore, it appears that different mechanisms control basal dopa-
mine neurotransmission versus the unique pattern of dopamine
responsiveness to a reward cue.

The neural mechanisms underlying sign- and goal-tracking beha-
viour remain to be elucidated. Here we have shown that stimulus–
reward associations that produce different CRs are mediated by
different neural circuitry. Previous research using site-specific dopa-
mine antagonism21 and dopamine-specific lesions22 indicated that
dopamine acts in the nucleus accumbens core to support the learning
and performance of sign-tracking behaviour. This work demonstrates
that dopamine-encoded prediction-error signals are indeed present in
the nucleus accumbens of sign-trackers, but not in the nucleus accum-
bens of goal-trackers. Although these neurochemical data alone do not
rule out the possibility that prediction-error signals are present in other
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Figure 3 | Conditional responses and phasic dopamine signalling in
response to CS and US presentation in outbred rats. Phasic dopamine release
was recorded in the core of the nucleus accumbens using FSCV across six days
of training. a, b, Behaviour directed towards the lever-CS (sign-tracking)
(a) and behaviour directed towards the food-tray (goal-tracking) (b) during
conditioning. Learning was evident in both groups because there was a
significant effect of session both for rats that learned a sign-tracking response
(n 5 6; session effect on lever contacts: F(5,25) 5 11.85, P 5 0.0001) and for rats
that learned a goal-tracking response (n 5 5; session effect on food-receptacle
contacts: F(5,20) 5 3.09, P 5 0.03). c, e, Change in dopamine concentration
(mean 1 s.e.m.) in response to CS and US presentation for each session of
conditioning. d, f, Change in peak amplitude (mean 1 s.e.m.) of the dopamine
signal observed in response to CS and US presentation for each session of
conditioning. (Bonferroni post-hoc comparison between CS- and US-evoked
dopamine release: *P , 0.05; **P , 0.01). Panels c and d demonstrate that
animals developing a sign-tracking CR (n 5 6) show increasing phasic
dopamine responses to CS presentation and decreasing responses to US
presentation consistent with bHR rats. Panels e–f demonstrate that animals
developing a goal-tracking CR (n 5 5) maintain phasic responses to US
presentation consistent with bLR rats.
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Figure 4 | Dopamine is necessary for learning CS–US associations that lead
to sign-tracking, but not goal-tracking. a–c, The effects of flupenthixol on
sign-tracking. a, Probability of approaching the lever-CS. b, Number of
contacts with the lever-CS. c, Latency to contact the lever-CS. d–f, The effects of
flupenthixol on goal-tracking. d, Probability of approaching the food-tray
during lever-CS presentation. e, Number of contacts with the food-tray during
lever-CS presentation. f, Latency to contact the food-tray during lever-CS
presentation. Data are expressed as mean 1 s.e.m. Flupenthixol (sessions 1–7)
blocked the performance of both sign-tracking and goal-tracking CRs. To
determine whether flupenthixol influenced performance or learning of a CR,
behaviour was examined following a saline injection on session 8 for all rats.
bLR rats that were treated with flupenthixol before sessions 1–7 (n 5 16)
responded similarly to the bLR saline group (n 5 10) on all measures of goal-
tracking behaviour on session 8, whereas bHR rats treated with flupenthixol
(n 5 22) differed significantly from the bHR saline group (n 5 10) on session 8
(*P , 0.01, saline versus flupenthixol). Thus, bLR rats learned the CS–US
association that produced a goal-tracking CR even though the drug prevented
the expression of this behaviour during training. Parenthetically, bHR rats
treated with flupenthixol did not develop a goal-tracking CR.
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dopamine release in the nucleus accumbens (see Fig. 3), differ in
whether they are prone to learn a sign-tracking or goal-tracking CR,
but they still develop patterns of dopamine release specific to that CR.
Therefore, it appears that different mechanisms control basal dopa-
mine neurotransmission versus the unique pattern of dopamine
responsiveness to a reward cue.

The neural mechanisms underlying sign- and goal-tracking beha-
viour remain to be elucidated. Here we have shown that stimulus–
reward associations that produce different CRs are mediated by
different neural circuitry. Previous research using site-specific dopa-
mine antagonism21 and dopamine-specific lesions22 indicated that
dopamine acts in the nucleus accumbens core to support the learning
and performance of sign-tracking behaviour. This work demonstrates
that dopamine-encoded prediction-error signals are indeed present in
the nucleus accumbens of sign-trackers, but not in the nucleus accum-
bens of goal-trackers. Although these neurochemical data alone do not
rule out the possibility that prediction-error signals are present in other
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Figure 3 | Conditional responses and phasic dopamine signalling in
response to CS and US presentation in outbred rats. Phasic dopamine release
was recorded in the core of the nucleus accumbens using FSCV across six days
of training. a, b, Behaviour directed towards the lever-CS (sign-tracking)
(a) and behaviour directed towards the food-tray (goal-tracking) (b) during
conditioning. Learning was evident in both groups because there was a
significant effect of session both for rats that learned a sign-tracking response
(n 5 6; session effect on lever contacts: F(5,25) 5 11.85, P 5 0.0001) and for rats
that learned a goal-tracking response (n 5 5; session effect on food-receptacle
contacts: F(5,20) 5 3.09, P 5 0.03). c, e, Change in dopamine concentration
(mean 1 s.e.m.) in response to CS and US presentation for each session of
conditioning. d, f, Change in peak amplitude (mean 1 s.e.m.) of the dopamine
signal observed in response to CS and US presentation for each session of
conditioning. (Bonferroni post-hoc comparison between CS- and US-evoked
dopamine release: *P , 0.05; **P , 0.01). Panels c and d demonstrate that
animals developing a sign-tracking CR (n 5 6) show increasing phasic
dopamine responses to CS presentation and decreasing responses to US
presentation consistent with bHR rats. Panels e–f demonstrate that animals
developing a goal-tracking CR (n 5 5) maintain phasic responses to US
presentation consistent with bLR rats.

0.0

0.2

0.4

0.6

0.8

1.0

bHR-flupenthixol
bHR-saline

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

bLR-flupenthixol
bLR-saline

0

20

40

60

80

0

20

40

60

80

1 2 3 4 5 6 7
3

4

5

6

7

8

8 1 2 3 4 5 6 7
3

4

5

6

7

8

bLR-flupenthixol
bLR-saline

bHR-flupenthixol
bHR-saline

8

C
on

ta
ct

s
La

te
nc

y 
(s

)

SessionSession

Sign-tracking
bHR rats

da

b e

c f

*

*

*

Goal-tracking
bLR rats

Figure 4 | Dopamine is necessary for learning CS–US associations that lead
to sign-tracking, but not goal-tracking. a–c, The effects of flupenthixol on
sign-tracking. a, Probability of approaching the lever-CS. b, Number of
contacts with the lever-CS. c, Latency to contact the lever-CS. d–f, The effects of
flupenthixol on goal-tracking. d, Probability of approaching the food-tray
during lever-CS presentation. e, Number of contacts with the food-tray during
lever-CS presentation. f, Latency to contact the food-tray during lever-CS
presentation. Data are expressed as mean 1 s.e.m. Flupenthixol (sessions 1–7)
blocked the performance of both sign-tracking and goal-tracking CRs. To
determine whether flupenthixol influenced performance or learning of a CR,
behaviour was examined following a saline injection on session 8 for all rats.
bLR rats that were treated with flupenthixol before sessions 1–7 (n 5 16)
responded similarly to the bLR saline group (n 5 10) on all measures of goal-
tracking behaviour on session 8, whereas bHR rats treated with flupenthixol
(n 5 22) differed significantly from the bHR saline group (n 5 10) on session 8
(*P , 0.01, saline versus flupenthixol). Thus, bLR rats learned the CS–US
association that produced a goal-tracking CR even though the drug prevented
the expression of this behaviour during training. Parenthetically, bHR rats
treated with flupenthixol did not develop a goal-tracking CR.
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dopamine release in the nucleus accumbens (see Fig. 3), differ in
whether they are prone to learn a sign-tracking or goal-tracking CR,
but they still develop patterns of dopamine release specific to that CR.
Therefore, it appears that different mechanisms control basal dopa-
mine neurotransmission versus the unique pattern of dopamine
responsiveness to a reward cue.

The neural mechanisms underlying sign- and goal-tracking beha-
viour remain to be elucidated. Here we have shown that stimulus–
reward associations that produce different CRs are mediated by
different neural circuitry. Previous research using site-specific dopa-
mine antagonism21 and dopamine-specific lesions22 indicated that
dopamine acts in the nucleus accumbens core to support the learning
and performance of sign-tracking behaviour. This work demonstrates
that dopamine-encoded prediction-error signals are indeed present in
the nucleus accumbens of sign-trackers, but not in the nucleus accum-
bens of goal-trackers. Although these neurochemical data alone do not
rule out the possibility that prediction-error signals are present in other
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Figure 3 | Conditional responses and phasic dopamine signalling in
response to CS and US presentation in outbred rats. Phasic dopamine release
was recorded in the core of the nucleus accumbens using FSCV across six days
of training. a, b, Behaviour directed towards the lever-CS (sign-tracking)
(a) and behaviour directed towards the food-tray (goal-tracking) (b) during
conditioning. Learning was evident in both groups because there was a
significant effect of session both for rats that learned a sign-tracking response
(n 5 6; session effect on lever contacts: F(5,25) 5 11.85, P 5 0.0001) and for rats
that learned a goal-tracking response (n 5 5; session effect on food-receptacle
contacts: F(5,20) 5 3.09, P 5 0.03). c, e, Change in dopamine concentration
(mean 1 s.e.m.) in response to CS and US presentation for each session of
conditioning. d, f, Change in peak amplitude (mean 1 s.e.m.) of the dopamine
signal observed in response to CS and US presentation for each session of
conditioning. (Bonferroni post-hoc comparison between CS- and US-evoked
dopamine release: *P , 0.05; **P , 0.01). Panels c and d demonstrate that
animals developing a sign-tracking CR (n 5 6) show increasing phasic
dopamine responses to CS presentation and decreasing responses to US
presentation consistent with bHR rats. Panels e–f demonstrate that animals
developing a goal-tracking CR (n 5 5) maintain phasic responses to US
presentation consistent with bLR rats.
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Figure 4 | Dopamine is necessary for learning CS–US associations that lead
to sign-tracking, but not goal-tracking. a–c, The effects of flupenthixol on
sign-tracking. a, Probability of approaching the lever-CS. b, Number of
contacts with the lever-CS. c, Latency to contact the lever-CS. d–f, The effects of
flupenthixol on goal-tracking. d, Probability of approaching the food-tray
during lever-CS presentation. e, Number of contacts with the food-tray during
lever-CS presentation. f, Latency to contact the food-tray during lever-CS
presentation. Data are expressed as mean 1 s.e.m. Flupenthixol (sessions 1–7)
blocked the performance of both sign-tracking and goal-tracking CRs. To
determine whether flupenthixol influenced performance or learning of a CR,
behaviour was examined following a saline injection on session 8 for all rats.
bLR rats that were treated with flupenthixol before sessions 1–7 (n 5 16)
responded similarly to the bLR saline group (n 5 10) on all measures of goal-
tracking behaviour on session 8, whereas bHR rats treated with flupenthixol
(n 5 22) differed significantly from the bHR saline group (n 5 10) on session 8
(*P , 0.01, saline versus flupenthixol). Thus, bLR rats learned the CS–US
association that produced a goal-tracking CR even though the drug prevented
the expression of this behaviour during training. Parenthetically, bHR rats
treated with flupenthixol did not develop a goal-tracking CR.
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Goal-tracking in humans?

Schad et al., in prep

ST: learn expected value V

GT: learn mappings T from CS to US identity

V(s) =
X

a

⇡(a; s)
X

s0

T (s0|s, a)[R(s0, a, s) + V(s0)]
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Successor representation

v� = (I�T�)�1R�

V ⇡(s) =
X

a

⇡(a|s)
X

s0

T a
ss0 [Ra

ss0 + V (s0)]
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Learning a successor representation

Russek et al., 2017 PLoS Biol

a predictive aspect reflecting knowledge of the state transitions P(s0|s,a), at least in terms of
aggregate occupancy, separate from the state/action rewards R(s,a).

This approach may thus offer a solution to how flexible, seemingly model-based choices
can be implemented, and indeed can arise from the same dopaminergic-striatal circuitry that
carries out model-free TD learning. What remains to be shown is whether algorithms based
on this strategy–applying the SR as input to TD learning–can produce the full range of model-
based behaviors. In the remainder of this paper, we simulate the behavior of such algorithms
to explore this question.

To simulate learning using the SR, we need to also simulate how the successor matrix Mπ is
itself produced from experience. Mπ can be defined through a recursive equation that is
directly analogous to Eqs 1 and 2:

MpÖs; :Ü à 1s á g
P

s0T
pÖs; s0ÜMpÖs0; :Ü; Ö9Ü

where 1s is the vector of all zeros except for a 1 in the sth position and Tπ is the one-step state
transition matrix that is dependent on π, Tπ(s,s0) = ∑aπ(a|s) P(s0|s,a).

Similar to how approaches to estimating V are derived from Eqs 1 and 2, one could derive
analogous approaches to estimating Mπ from Eq 9. Specifically, one could utilize a “model-
based” approach that would learn Tπ and use it iteratively to derive a solution for Mπ.

Fig 3. Example state representations. a) Agent position (rodent image) in a maze whose hallways are
indicated by grey. b) Punctate representation of the agent’s current state. Model-free behavior results from TD
computation applied to this representation c,d) Possible successor representations of agent’s state. Model-
based behavior may result from TD applied to this type of representation. The successor representation
depends on the action selection policy the agent is expected to follow in future states. The figures show the
representation of the current state under a random policy (c) versus a policy favoring rightward moves (d).

https://doi.org/10.1371/journal.pcbi.1005768.g003

The successor representation as a mechanism for model-based behavior

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005768 September 25, 2017 10 / 35

Alternatively, a TD learning approach could be taken to learn Mπ directly, without use of a
one-step model Tπ. (This approach is analogous to model-free TD methods for learning V,
though it is arguably not really model-free since Mπ is itself a sort of long-run transition
model.) This TD learning approach would cache rows of M and update them after transition-
ing from their corresponding states, by moving the cached row closer to a one-sample estimate
of the right hand side of Eq 9. Lastly, such TD updates could also occur offline, using simulated
or previously experienced samples. This approach for learning Mπ would be comparable to the
Dyna approach for learning V. The three models we consider below correspond to these three
different possibilities.

Finally, note that SR-based algorithms have favorable computational properties; in particu-
lar, at choice time, given Mπ (e.g. if it is learned and cached rather than computed from a one-
step model), SR can compute values Vπ with a single dot product (e.g., a single layer of a linear
neural network, Eq 7), analogous to model-free TD algorithms. This is in contrast to the multi-
ple steps of iterative computation required at choice time for computing value via Eq 1 in stan-
dard model-based approaches. This comes at the cost of storing the successor matrix Mπ: if S is
the number of states in the task, the SR matrix has a number of entries equal to S2. Such entries
of Mπ can be stored as the (all-to-all) set of weights from a single layer of a neural network
mapping input states to their successor representation.

Results

In the following sections, we explore the behavioral consequences of each of these strategies.
We structure the results as follows. For each learning method, we first present the algorithm.
Then we present the results of simulations using that algorithm. The purpose of simulations is
to verify our qualitative reasoning about the behavior of the algorithm and illustrate how the
algorithm’s behavior compares to that of model-based dynamic programming methods. These
simulations also suggest experiments that could be used to identify whether an animal or
human were planning using such a strategy. Each task that we simulate is designed to be a cate-
gorical test of the algorithm. Following some change in the task to which the agent must
respond, some of the algorithms can arrive at the correct decision without additional experi-
ence, but other algorithms cannot. Such failures are due to the computational properties of the
algorithms themselves and are thus parameter-independent. To ensure that this is the case, for
each simulation presented in the results, we have verified that the qualitative result can be
observed robustly under a wide range of parameter settings. In general, there are parameter
settings under which models, which are demonstrated below to succeed in a given task, can be
made to fail it. However, there are no parameter settings under which a model that is shown
below to fail a given task will pass it (S1 Table).

For each algorithm, we discuss its biological plausibility as well as how that algorithm’s per-
formance lines up with that of animals.

Algorithm 1: The original successor representation (SR-TD)

The original SR [15] (which we call SR-TD) constructs the future state occupancy predictions
Mπ using a TD learning approach. This approach caches rows of Mπ and incrementally
updates them after transitioning from their corresponding states. Specifically, following each
state transition s! s0 each element of row s is updated as follows:
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where 1s is the vector of all zeros except for a 1 in the sth position. Mπ(s,:) is used as input to
another TD learning stage, this time to learn the weights w for predicting expected future
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input. The update rule for that input, Mπ(s,:), is also based on a TD learning rule, but here
applied to learning to predict cumulative future state occupancies. This uses a vector-valued
error signal to update an entire row of Mπ at each step. Crucially, despite the functional simi-
larity between this rule and the TD update prescribed to dopamine, we do not suggest that
dopamine carries this second error signal. Neurally, this sort of learning might, instead, be
implemented using Hebbian associative learning between adjacent consecutive states [55],
with decaying eligibility traces (like TD(1)) to capture longer-run dependencies. Lastly,
although we have defined the successor representation over tabular representations of states, is
also possible to combine the SR with function approximation and distributed representations
in order to reduce its dimensionality [21,56].

Behavioral adequacy. SR-TD is capable of solving some reward revaluation experiments.
For similar reasons, SR-TD can solve sensory preconditioning (e.g. [37]) and reward devalua-
tion tasks (e.g. [6,28,35,36]), both of which turn on an analogous ability to update behavior
when state transition probabilities are held constant but reward values are changed. Evidence
for model-based behavior in animals and humans has typically come from these types of tasks,
suggesting that SR-TD could underlie a good proportion of behavior considered to be model-
based. However, SR-TD is incapable of solving seemingly analogous tasks that require replan-
ning under a transition rather than a reward change. Because there is at least some evidence
from the early literature [57] that animals can adapt correctly to such detour situations, we
suggest that this inflexibility prevents SR-TD, on its own, from being a plausible mechanism
for the full repertoire of model-based behavior.

Algorithm 2: Dynamic recomputation of the successor representation
(SR-MB)

Here, we explore a novel “model-based” approach, SR-MB, for constructing the expected state
occupancy vector Mπ(s,:). SR-MB learns a one-step transition model, Tπ and uses it, at decision
time, to derive a solution to Eq 9. One key constraint on a model-based implementation sug-
gested by the data is that the computation should be staged in a way consistent with the archi-
tecture suggested by Fig 1A. Specifically, the TD architecture in Fig 1A suggests that, because
the states are represented in cortex (or hippocampus) and weights (which capture information
about rewards) and value are represented in downstream cortico-striatal synapses and medium
spiny striatal neurons, information about R(s,a) and V(s) should not be used in the online con-
struction of states. For the SR approach, this implies that M be constructed without using direct
knowledge of R(s,a) or V(s). As we see below, this serial architecture–a cortical state-prediction
stage providing input for a subcortical reward-prediction stage–if true, would impose interest-
ing limitations on the resulting behavior.

To construct Mπ(s,:), SR-MB first learns the one-step state transition matrix Tπ, imple-
mented in our simulations through separate learning of P(s0|s,a) as well as π(a|s), the agent’s
previously expressed decision policy (see Methods). Prior to each decision, Tπ is used to com-
pute a solution to Eq 9. This solution can be expressed in either of two forms. A given row, s,
of M can be computed individually as the sum of n-step transition probabilities starting from
state s:
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Alternatively, matrix inversion can be used to solve for the entire successor matrix at once:
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a predictive aspect reflecting knowledge of the state transitions P(s0|s,a), at least in terms of
aggregate occupancy, separate from the state/action rewards R(s,a).

This approach may thus offer a solution to how flexible, seemingly model-based choices
can be implemented, and indeed can arise from the same dopaminergic-striatal circuitry that
carries out model-free TD learning. What remains to be shown is whether algorithms based
on this strategy–applying the SR as input to TD learning–can produce the full range of model-
based behaviors. In the remainder of this paper, we simulate the behavior of such algorithms
to explore this question.

To simulate learning using the SR, we need to also simulate how the successor matrix Mπ is
itself produced from experience. Mπ can be defined through a recursive equation that is
directly analogous to Eqs 1 and 2:

MpÖs; :Ü à 1s á g
P

s0T
pÖs; s0ÜMpÖs0; :Ü; Ö9Ü

where 1s is the vector of all zeros except for a 1 in the sth position and Tπ is the one-step state
transition matrix that is dependent on π, Tπ(s,s0) = ∑aπ(a|s) P(s0|s,a).

Similar to how approaches to estimating V are derived from Eqs 1 and 2, one could derive
analogous approaches to estimating Mπ from Eq 9. Specifically, one could utilize a “model-
based” approach that would learn Tπ and use it iteratively to derive a solution for Mπ.

Fig 3. Example state representations. a) Agent position (rodent image) in a maze whose hallways are
indicated by grey. b) Punctate representation of the agent’s current state. Model-free behavior results from TD
computation applied to this representation c,d) Possible successor representations of agent’s state. Model-
based behavior may result from TD applied to this type of representation. The successor representation
depends on the action selection policy the agent is expected to follow in future states. The figures show the
representation of the current state under a random policy (c) versus a policy favoring rightward moves (d).

https://doi.org/10.1371/journal.pcbi.1005768.g003
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Alternatively, a TD learning approach could be taken to learn Mπ directly, without use of a
one-step model Tπ. (This approach is analogous to model-free TD methods for learning V,
though it is arguably not really model-free since Mπ is itself a sort of long-run transition
model.) This TD learning approach would cache rows of M and update them after transition-
ing from their corresponding states, by moving the cached row closer to a one-sample estimate
of the right hand side of Eq 9. Lastly, such TD updates could also occur offline, using simulated
or previously experienced samples. This approach for learning Mπ would be comparable to the
Dyna approach for learning V. The three models we consider below correspond to these three
different possibilities.

Finally, note that SR-based algorithms have favorable computational properties; in particu-
lar, at choice time, given Mπ (e.g. if it is learned and cached rather than computed from a one-
step model), SR can compute values Vπ with a single dot product (e.g., a single layer of a linear
neural network, Eq 7), analogous to model-free TD algorithms. This is in contrast to the multi-
ple steps of iterative computation required at choice time for computing value via Eq 1 in stan-
dard model-based approaches. This comes at the cost of storing the successor matrix Mπ: if S is
the number of states in the task, the SR matrix has a number of entries equal to S2. Such entries
of Mπ can be stored as the (all-to-all) set of weights from a single layer of a neural network
mapping input states to their successor representation.

Results

In the following sections, we explore the behavioral consequences of each of these strategies.
We structure the results as follows. For each learning method, we first present the algorithm.
Then we present the results of simulations using that algorithm. The purpose of simulations is
to verify our qualitative reasoning about the behavior of the algorithm and illustrate how the
algorithm’s behavior compares to that of model-based dynamic programming methods. These
simulations also suggest experiments that could be used to identify whether an animal or
human were planning using such a strategy. Each task that we simulate is designed to be a cate-
gorical test of the algorithm. Following some change in the task to which the agent must
respond, some of the algorithms can arrive at the correct decision without additional experi-
ence, but other algorithms cannot. Such failures are due to the computational properties of the
algorithms themselves and are thus parameter-independent. To ensure that this is the case, for
each simulation presented in the results, we have verified that the qualitative result can be
observed robustly under a wide range of parameter settings. In general, there are parameter
settings under which models, which are demonstrated below to succeed in a given task, can be
made to fail it. However, there are no parameter settings under which a model that is shown
below to fail a given task will pass it (S1 Table).

For each algorithm, we discuss its biological plausibility as well as how that algorithm’s per-
formance lines up with that of animals.

Algorithm 1: The original successor representation (SR-TD)

The original SR [15] (which we call SR-TD) constructs the future state occupancy predictions
Mπ using a TD learning approach. This approach caches rows of Mπ and incrementally
updates them after transitioning from their corresponding states. Specifically, following each
state transition s! s0 each element of row s is updated as follows:
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where 1s is the vector of all zeros except for a 1 in the sth position. Mπ(s,:) is used as input to
another TD learning stage, this time to learn the weights w for predicting expected future
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input. The update rule for that input, Mπ(s,:), is also based on a TD learning rule, but here
applied to learning to predict cumulative future state occupancies. This uses a vector-valued
error signal to update an entire row of Mπ at each step. Crucially, despite the functional simi-
larity between this rule and the TD update prescribed to dopamine, we do not suggest that
dopamine carries this second error signal. Neurally, this sort of learning might, instead, be
implemented using Hebbian associative learning between adjacent consecutive states [55],
with decaying eligibility traces (like TD(1)) to capture longer-run dependencies. Lastly,
although we have defined the successor representation over tabular representations of states, is
also possible to combine the SR with function approximation and distributed representations
in order to reduce its dimensionality [21,56].

Behavioral adequacy. SR-TD is capable of solving some reward revaluation experiments.
For similar reasons, SR-TD can solve sensory preconditioning (e.g. [37]) and reward devalua-
tion tasks (e.g. [6,28,35,36]), both of which turn on an analogous ability to update behavior
when state transition probabilities are held constant but reward values are changed. Evidence
for model-based behavior in animals and humans has typically come from these types of tasks,
suggesting that SR-TD could underlie a good proportion of behavior considered to be model-
based. However, SR-TD is incapable of solving seemingly analogous tasks that require replan-
ning under a transition rather than a reward change. Because there is at least some evidence
from the early literature [57] that animals can adapt correctly to such detour situations, we
suggest that this inflexibility prevents SR-TD, on its own, from being a plausible mechanism
for the full repertoire of model-based behavior.

Algorithm 2: Dynamic recomputation of the successor representation
(SR-MB)

Here, we explore a novel “model-based” approach, SR-MB, for constructing the expected state
occupancy vector Mπ(s,:). SR-MB learns a one-step transition model, Tπ and uses it, at decision
time, to derive a solution to Eq 9. One key constraint on a model-based implementation sug-
gested by the data is that the computation should be staged in a way consistent with the archi-
tecture suggested by Fig 1A. Specifically, the TD architecture in Fig 1A suggests that, because
the states are represented in cortex (or hippocampus) and weights (which capture information
about rewards) and value are represented in downstream cortico-striatal synapses and medium
spiny striatal neurons, information about R(s,a) and V(s) should not be used in the online con-
struction of states. For the SR approach, this implies that M be constructed without using direct
knowledge of R(s,a) or V(s). As we see below, this serial architecture–a cortical state-prediction
stage providing input for a subcortical reward-prediction stage–if true, would impose interest-
ing limitations on the resulting behavior.

To construct Mπ(s,:), SR-MB first learns the one-step state transition matrix Tπ, imple-
mented in our simulations through separate learning of P(s0|s,a) as well as π(a|s), the agent’s
previously expressed decision policy (see Methods). Prior to each decision, Tπ is used to com-
pute a solution to Eq 9. This solution can be expressed in either of two forms. A given row, s,
of M can be computed individually as the sum of n-step transition probabilities starting from
state s:
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Alternatively, matrix inversion can be used to solve for the entire successor matrix at once:
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a predictive aspect reflecting knowledge of the state transitions P(s0|s,a), at least in terms of
aggregate occupancy, separate from the state/action rewards R(s,a).

This approach may thus offer a solution to how flexible, seemingly model-based choices
can be implemented, and indeed can arise from the same dopaminergic-striatal circuitry that
carries out model-free TD learning. What remains to be shown is whether algorithms based
on this strategy–applying the SR as input to TD learning–can produce the full range of model-
based behaviors. In the remainder of this paper, we simulate the behavior of such algorithms
to explore this question.

To simulate learning using the SR, we need to also simulate how the successor matrix Mπ is
itself produced from experience. Mπ can be defined through a recursive equation that is
directly analogous to Eqs 1 and 2:
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where 1s is the vector of all zeros except for a 1 in the sth position and Tπ is the one-step state
transition matrix that is dependent on π, Tπ(s,s0) = ∑aπ(a|s) P(s0|s,a).

Similar to how approaches to estimating V are derived from Eqs 1 and 2, one could derive
analogous approaches to estimating Mπ from Eq 9. Specifically, one could utilize a “model-
based” approach that would learn Tπ and use it iteratively to derive a solution for Mπ.

Fig 3. Example state representations. a) Agent position (rodent image) in a maze whose hallways are
indicated by grey. b) Punctate representation of the agent’s current state. Model-free behavior results from TD
computation applied to this representation c,d) Possible successor representations of agent’s state. Model-
based behavior may result from TD applied to this type of representation. The successor representation
depends on the action selection policy the agent is expected to follow in future states. The figures show the
representation of the current state under a random policy (c) versus a policy favoring rightward moves (d).

https://doi.org/10.1371/journal.pcbi.1005768.g003
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Alternatively, a TD learning approach could be taken to learn Mπ directly, without use of a
one-step model Tπ. (This approach is analogous to model-free TD methods for learning V,
though it is arguably not really model-free since Mπ is itself a sort of long-run transition
model.) This TD learning approach would cache rows of M and update them after transition-
ing from their corresponding states, by moving the cached row closer to a one-sample estimate
of the right hand side of Eq 9. Lastly, such TD updates could also occur offline, using simulated
or previously experienced samples. This approach for learning Mπ would be comparable to the
Dyna approach for learning V. The three models we consider below correspond to these three
different possibilities.

Finally, note that SR-based algorithms have favorable computational properties; in particu-
lar, at choice time, given Mπ (e.g. if it is learned and cached rather than computed from a one-
step model), SR can compute values Vπ with a single dot product (e.g., a single layer of a linear
neural network, Eq 7), analogous to model-free TD algorithms. This is in contrast to the multi-
ple steps of iterative computation required at choice time for computing value via Eq 1 in stan-
dard model-based approaches. This comes at the cost of storing the successor matrix Mπ: if S is
the number of states in the task, the SR matrix has a number of entries equal to S2. Such entries
of Mπ can be stored as the (all-to-all) set of weights from a single layer of a neural network
mapping input states to their successor representation.

Results

In the following sections, we explore the behavioral consequences of each of these strategies.
We structure the results as follows. For each learning method, we first present the algorithm.
Then we present the results of simulations using that algorithm. The purpose of simulations is
to verify our qualitative reasoning about the behavior of the algorithm and illustrate how the
algorithm’s behavior compares to that of model-based dynamic programming methods. These
simulations also suggest experiments that could be used to identify whether an animal or
human were planning using such a strategy. Each task that we simulate is designed to be a cate-
gorical test of the algorithm. Following some change in the task to which the agent must
respond, some of the algorithms can arrive at the correct decision without additional experi-
ence, but other algorithms cannot. Such failures are due to the computational properties of the
algorithms themselves and are thus parameter-independent. To ensure that this is the case, for
each simulation presented in the results, we have verified that the qualitative result can be
observed robustly under a wide range of parameter settings. In general, there are parameter
settings under which models, which are demonstrated below to succeed in a given task, can be
made to fail it. However, there are no parameter settings under which a model that is shown
below to fail a given task will pass it (S1 Table).

For each algorithm, we discuss its biological plausibility as well as how that algorithm’s per-
formance lines up with that of animals.

Algorithm 1: The original successor representation (SR-TD)

The original SR [15] (which we call SR-TD) constructs the future state occupancy predictions
Mπ using a TD learning approach. This approach caches rows of Mπ and incrementally
updates them after transitioning from their corresponding states. Specifically, following each
state transition s! s0 each element of row s is updated as follows:
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where 1s is the vector of all zeros except for a 1 in the sth position. Mπ(s,:) is used as input to
another TD learning stage, this time to learn the weights w for predicting expected future
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input. The update rule for that input, Mπ(s,:), is also based on a TD learning rule, but here
applied to learning to predict cumulative future state occupancies. This uses a vector-valued
error signal to update an entire row of Mπ at each step. Crucially, despite the functional simi-
larity between this rule and the TD update prescribed to dopamine, we do not suggest that
dopamine carries this second error signal. Neurally, this sort of learning might, instead, be
implemented using Hebbian associative learning between adjacent consecutive states [55],
with decaying eligibility traces (like TD(1)) to capture longer-run dependencies. Lastly,
although we have defined the successor representation over tabular representations of states, is
also possible to combine the SR with function approximation and distributed representations
in order to reduce its dimensionality [21,56].

Behavioral adequacy. SR-TD is capable of solving some reward revaluation experiments.
For similar reasons, SR-TD can solve sensory preconditioning (e.g. [37]) and reward devalua-
tion tasks (e.g. [6,28,35,36]), both of which turn on an analogous ability to update behavior
when state transition probabilities are held constant but reward values are changed. Evidence
for model-based behavior in animals and humans has typically come from these types of tasks,
suggesting that SR-TD could underlie a good proportion of behavior considered to be model-
based. However, SR-TD is incapable of solving seemingly analogous tasks that require replan-
ning under a transition rather than a reward change. Because there is at least some evidence
from the early literature [57] that animals can adapt correctly to such detour situations, we
suggest that this inflexibility prevents SR-TD, on its own, from being a plausible mechanism
for the full repertoire of model-based behavior.

Algorithm 2: Dynamic recomputation of the successor representation
(SR-MB)

Here, we explore a novel “model-based” approach, SR-MB, for constructing the expected state
occupancy vector Mπ(s,:). SR-MB learns a one-step transition model, Tπ and uses it, at decision
time, to derive a solution to Eq 9. One key constraint on a model-based implementation sug-
gested by the data is that the computation should be staged in a way consistent with the archi-
tecture suggested by Fig 1A. Specifically, the TD architecture in Fig 1A suggests that, because
the states are represented in cortex (or hippocampus) and weights (which capture information
about rewards) and value are represented in downstream cortico-striatal synapses and medium
spiny striatal neurons, information about R(s,a) and V(s) should not be used in the online con-
struction of states. For the SR approach, this implies that M be constructed without using direct
knowledge of R(s,a) or V(s). As we see below, this serial architecture–a cortical state-prediction
stage providing input for a subcortical reward-prediction stage–if true, would impose interest-
ing limitations on the resulting behavior.

To construct Mπ(s,:), SR-MB first learns the one-step state transition matrix Tπ, imple-
mented in our simulations through separate learning of P(s0|s,a) as well as π(a|s), the agent’s
previously expressed decision policy (see Methods). Prior to each decision, Tπ is used to com-
pute a solution to Eq 9. This solution can be expressed in either of two forms. A given row, s,
of M can be computed individually as the sum of n-step transition probabilities starting from
state s:
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Alternatively, matrix inversion can be used to solve for the entire successor matrix at once:
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and thus would approach the barricade rather than taking a detour on the first visit back to S.
As shown in supplemental materials, the depth-limited model-free algorithm also fails this test
(S1 Table). A fully model-based algorithm (not shown) does make the correct choice in this
case.

Interim discussion

Biological plausibility. The reward learning stage of this rule (learning weights w to map
Mπ(s,:) to Vπ(s)) is the standard dopaminergic TD rule, Eqs 4 and 8, operating over a new

Fig 4. Behavior of SR-TD. a) One-step of model-based lookahead combined with TD learning applied to punctate representations
cannot solve the latent learning task. Median value function (grayscale) and implied policy (arrows) are shown immediately after the
agent learns about reward in latent learning task. b) SR-TD can solve the latent learning task. Median value function (grayscale) and
implied policy (arrows) are shown immediately after the agent learns about reward in latent learning task. c) SR-TD can only update
predicted future state occupancies following direct experience with states and their multi-step successors. For instance, if SR-TD
were to learn that s” no longer follows s’, it would not be able to infer that state s” no longer follows state s. Whether animals make
this sort of inference is tested in the detour task. d) SR-TD cannot solve detour problems. Median value function (grayscale) and
implied policy (arrows) are shown after SR-TD encounters barrier in detour task. SR-TD fails to update decision policy to reflect the
new shortest path.

https://doi.org/10.1371/journal.pcbi.1005768.g004

The successor representation as a mechanism for model-based behavior

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005768 September 25, 2017 13 / 35



Quentin HuysRL SWC

Learning a successor representation

Russek et al., 2017 PLoS Biol

‣ “Model-free learning”

a predictive aspect reflecting knowledge of the state transitions P(s0|s,a), at least in terms of
aggregate occupancy, separate from the state/action rewards R(s,a).

This approach may thus offer a solution to how flexible, seemingly model-based choices
can be implemented, and indeed can arise from the same dopaminergic-striatal circuitry that
carries out model-free TD learning. What remains to be shown is whether algorithms based
on this strategy–applying the SR as input to TD learning–can produce the full range of model-
based behaviors. In the remainder of this paper, we simulate the behavior of such algorithms
to explore this question.

To simulate learning using the SR, we need to also simulate how the successor matrix Mπ is
itself produced from experience. Mπ can be defined through a recursive equation that is
directly analogous to Eqs 1 and 2:

MpÖs; :Ü à 1s á g
P

s0T
pÖs; s0ÜMpÖs0; :Ü; Ö9Ü

where 1s is the vector of all zeros except for a 1 in the sth position and Tπ is the one-step state
transition matrix that is dependent on π, Tπ(s,s0) = ∑aπ(a|s) P(s0|s,a).

Similar to how approaches to estimating V are derived from Eqs 1 and 2, one could derive
analogous approaches to estimating Mπ from Eq 9. Specifically, one could utilize a “model-
based” approach that would learn Tπ and use it iteratively to derive a solution for Mπ.

Fig 3. Example state representations. a) Agent position (rodent image) in a maze whose hallways are
indicated by grey. b) Punctate representation of the agent’s current state. Model-free behavior results from TD
computation applied to this representation c,d) Possible successor representations of agent’s state. Model-
based behavior may result from TD applied to this type of representation. The successor representation
depends on the action selection policy the agent is expected to follow in future states. The figures show the
representation of the current state under a random policy (c) versus a policy favoring rightward moves (d).

https://doi.org/10.1371/journal.pcbi.1005768.g003
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Alternatively, a TD learning approach could be taken to learn Mπ directly, without use of a
one-step model Tπ. (This approach is analogous to model-free TD methods for learning V,
though it is arguably not really model-free since Mπ is itself a sort of long-run transition
model.) This TD learning approach would cache rows of M and update them after transition-
ing from their corresponding states, by moving the cached row closer to a one-sample estimate
of the right hand side of Eq 9. Lastly, such TD updates could also occur offline, using simulated
or previously experienced samples. This approach for learning Mπ would be comparable to the
Dyna approach for learning V. The three models we consider below correspond to these three
different possibilities.

Finally, note that SR-based algorithms have favorable computational properties; in particu-
lar, at choice time, given Mπ (e.g. if it is learned and cached rather than computed from a one-
step model), SR can compute values Vπ with a single dot product (e.g., a single layer of a linear
neural network, Eq 7), analogous to model-free TD algorithms. This is in contrast to the multi-
ple steps of iterative computation required at choice time for computing value via Eq 1 in stan-
dard model-based approaches. This comes at the cost of storing the successor matrix Mπ: if S is
the number of states in the task, the SR matrix has a number of entries equal to S2. Such entries
of Mπ can be stored as the (all-to-all) set of weights from a single layer of a neural network
mapping input states to their successor representation.

Results

In the following sections, we explore the behavioral consequences of each of these strategies.
We structure the results as follows. For each learning method, we first present the algorithm.
Then we present the results of simulations using that algorithm. The purpose of simulations is
to verify our qualitative reasoning about the behavior of the algorithm and illustrate how the
algorithm’s behavior compares to that of model-based dynamic programming methods. These
simulations also suggest experiments that could be used to identify whether an animal or
human were planning using such a strategy. Each task that we simulate is designed to be a cate-
gorical test of the algorithm. Following some change in the task to which the agent must
respond, some of the algorithms can arrive at the correct decision without additional experi-
ence, but other algorithms cannot. Such failures are due to the computational properties of the
algorithms themselves and are thus parameter-independent. To ensure that this is the case, for
each simulation presented in the results, we have verified that the qualitative result can be
observed robustly under a wide range of parameter settings. In general, there are parameter
settings under which models, which are demonstrated below to succeed in a given task, can be
made to fail it. However, there are no parameter settings under which a model that is shown
below to fail a given task will pass it (S1 Table).

For each algorithm, we discuss its biological plausibility as well as how that algorithm’s per-
formance lines up with that of animals.

Algorithm 1: The original successor representation (SR-TD)

The original SR [15] (which we call SR-TD) constructs the future state occupancy predictions
Mπ using a TD learning approach. This approach caches rows of Mπ and incrementally
updates them after transitioning from their corresponding states. Specifically, following each
state transition s! s0 each element of row s is updated as follows:

MpÖs; :Ü MpÖs; :Ü á aSRâ1s á gMpÖs0; :Ü �MpÖs; :Üä; Ö10Ü

where 1s is the vector of all zeros except for a 1 in the sth position. Mπ(s,:) is used as input to
another TD learning stage, this time to learn the weights w for predicting expected future
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input. The update rule for that input, Mπ(s,:), is also based on a TD learning rule, but here
applied to learning to predict cumulative future state occupancies. This uses a vector-valued
error signal to update an entire row of Mπ at each step. Crucially, despite the functional simi-
larity between this rule and the TD update prescribed to dopamine, we do not suggest that
dopamine carries this second error signal. Neurally, this sort of learning might, instead, be
implemented using Hebbian associative learning between adjacent consecutive states [55],
with decaying eligibility traces (like TD(1)) to capture longer-run dependencies. Lastly,
although we have defined the successor representation over tabular representations of states, is
also possible to combine the SR with function approximation and distributed representations
in order to reduce its dimensionality [21,56].

Behavioral adequacy. SR-TD is capable of solving some reward revaluation experiments.
For similar reasons, SR-TD can solve sensory preconditioning (e.g. [37]) and reward devalua-
tion tasks (e.g. [6,28,35,36]), both of which turn on an analogous ability to update behavior
when state transition probabilities are held constant but reward values are changed. Evidence
for model-based behavior in animals and humans has typically come from these types of tasks,
suggesting that SR-TD could underlie a good proportion of behavior considered to be model-
based. However, SR-TD is incapable of solving seemingly analogous tasks that require replan-
ning under a transition rather than a reward change. Because there is at least some evidence
from the early literature [57] that animals can adapt correctly to such detour situations, we
suggest that this inflexibility prevents SR-TD, on its own, from being a plausible mechanism
for the full repertoire of model-based behavior.

Algorithm 2: Dynamic recomputation of the successor representation
(SR-MB)

Here, we explore a novel “model-based” approach, SR-MB, for constructing the expected state
occupancy vector Mπ(s,:). SR-MB learns a one-step transition model, Tπ and uses it, at decision
time, to derive a solution to Eq 9. One key constraint on a model-based implementation sug-
gested by the data is that the computation should be staged in a way consistent with the archi-
tecture suggested by Fig 1A. Specifically, the TD architecture in Fig 1A suggests that, because
the states are represented in cortex (or hippocampus) and weights (which capture information
about rewards) and value are represented in downstream cortico-striatal synapses and medium
spiny striatal neurons, information about R(s,a) and V(s) should not be used in the online con-
struction of states. For the SR approach, this implies that M be constructed without using direct
knowledge of R(s,a) or V(s). As we see below, this serial architecture–a cortical state-prediction
stage providing input for a subcortical reward-prediction stage–if true, would impose interest-
ing limitations on the resulting behavior.

To construct Mπ(s,:), SR-MB first learns the one-step state transition matrix Tπ, imple-
mented in our simulations through separate learning of P(s0|s,a) as well as π(a|s), the agent’s
previously expressed decision policy (see Methods). Prior to each decision, Tπ is used to com-
pute a solution to Eq 9. This solution can be expressed in either of two forms. A given row, s,
of M can be computed individually as the sum of n-step transition probabilities starting from
state s:

MpÖs; :Ü à 1T
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Alternatively, matrix inversion can be used to solve for the entire successor matrix at once:
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and thus would approach the barricade rather than taking a detour on the first visit back to S.
As shown in supplemental materials, the depth-limited model-free algorithm also fails this test
(S1 Table). A fully model-based algorithm (not shown) does make the correct choice in this
case.

Interim discussion

Biological plausibility. The reward learning stage of this rule (learning weights w to map
Mπ(s,:) to Vπ(s)) is the standard dopaminergic TD rule, Eqs 4 and 8, operating over a new

Fig 4. Behavior of SR-TD. a) One-step of model-based lookahead combined with TD learning applied to punctate representations
cannot solve the latent learning task. Median value function (grayscale) and implied policy (arrows) are shown immediately after the
agent learns about reward in latent learning task. b) SR-TD can solve the latent learning task. Median value function (grayscale) and
implied policy (arrows) are shown immediately after the agent learns about reward in latent learning task. c) SR-TD can only update
predicted future state occupancies following direct experience with states and their multi-step successors. For instance, if SR-TD
were to learn that s” no longer follows s’, it would not be able to infer that state s” no longer follows state s. Whether animals make
this sort of inference is tested in the detour task. d) SR-TD cannot solve detour problems. Median value function (grayscale) and
implied policy (arrows) are shown after SR-TD encounters barrier in detour task. SR-TD fails to update decision policy to reflect the
new shortest path.

https://doi.org/10.1371/journal.pcbi.1005768.g004
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a predictive aspect reflecting knowledge of the state transitions P(s0|s,a), at least in terms of
aggregate occupancy, separate from the state/action rewards R(s,a).

This approach may thus offer a solution to how flexible, seemingly model-based choices
can be implemented, and indeed can arise from the same dopaminergic-striatal circuitry that
carries out model-free TD learning. What remains to be shown is whether algorithms based
on this strategy–applying the SR as input to TD learning–can produce the full range of model-
based behaviors. In the remainder of this paper, we simulate the behavior of such algorithms
to explore this question.

To simulate learning using the SR, we need to also simulate how the successor matrix Mπ is
itself produced from experience. Mπ can be defined through a recursive equation that is
directly analogous to Eqs 1 and 2:

MpÖs; :Ü à 1s á g
P
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where 1s is the vector of all zeros except for a 1 in the sth position and Tπ is the one-step state
transition matrix that is dependent on π, Tπ(s,s0) = ∑aπ(a|s) P(s0|s,a).

Similar to how approaches to estimating V are derived from Eqs 1 and 2, one could derive
analogous approaches to estimating Mπ from Eq 9. Specifically, one could utilize a “model-
based” approach that would learn Tπ and use it iteratively to derive a solution for Mπ.

Fig 3. Example state representations. a) Agent position (rodent image) in a maze whose hallways are
indicated by grey. b) Punctate representation of the agent’s current state. Model-free behavior results from TD
computation applied to this representation c,d) Possible successor representations of agent’s state. Model-
based behavior may result from TD applied to this type of representation. The successor representation
depends on the action selection policy the agent is expected to follow in future states. The figures show the
representation of the current state under a random policy (c) versus a policy favoring rightward moves (d).

https://doi.org/10.1371/journal.pcbi.1005768.g003
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Alternatively, a TD learning approach could be taken to learn Mπ directly, without use of a
one-step model Tπ. (This approach is analogous to model-free TD methods for learning V,
though it is arguably not really model-free since Mπ is itself a sort of long-run transition
model.) This TD learning approach would cache rows of M and update them after transition-
ing from their corresponding states, by moving the cached row closer to a one-sample estimate
of the right hand side of Eq 9. Lastly, such TD updates could also occur offline, using simulated
or previously experienced samples. This approach for learning Mπ would be comparable to the
Dyna approach for learning V. The three models we consider below correspond to these three
different possibilities.

Finally, note that SR-based algorithms have favorable computational properties; in particu-
lar, at choice time, given Mπ (e.g. if it is learned and cached rather than computed from a one-
step model), SR can compute values Vπ with a single dot product (e.g., a single layer of a linear
neural network, Eq 7), analogous to model-free TD algorithms. This is in contrast to the multi-
ple steps of iterative computation required at choice time for computing value via Eq 1 in stan-
dard model-based approaches. This comes at the cost of storing the successor matrix Mπ: if S is
the number of states in the task, the SR matrix has a number of entries equal to S2. Such entries
of Mπ can be stored as the (all-to-all) set of weights from a single layer of a neural network
mapping input states to their successor representation.

Results

In the following sections, we explore the behavioral consequences of each of these strategies.
We structure the results as follows. For each learning method, we first present the algorithm.
Then we present the results of simulations using that algorithm. The purpose of simulations is
to verify our qualitative reasoning about the behavior of the algorithm and illustrate how the
algorithm’s behavior compares to that of model-based dynamic programming methods. These
simulations also suggest experiments that could be used to identify whether an animal or
human were planning using such a strategy. Each task that we simulate is designed to be a cate-
gorical test of the algorithm. Following some change in the task to which the agent must
respond, some of the algorithms can arrive at the correct decision without additional experi-
ence, but other algorithms cannot. Such failures are due to the computational properties of the
algorithms themselves and are thus parameter-independent. To ensure that this is the case, for
each simulation presented in the results, we have verified that the qualitative result can be
observed robustly under a wide range of parameter settings. In general, there are parameter
settings under which models, which are demonstrated below to succeed in a given task, can be
made to fail it. However, there are no parameter settings under which a model that is shown
below to fail a given task will pass it (S1 Table).

For each algorithm, we discuss its biological plausibility as well as how that algorithm’s per-
formance lines up with that of animals.

Algorithm 1: The original successor representation (SR-TD)

The original SR [15] (which we call SR-TD) constructs the future state occupancy predictions
Mπ using a TD learning approach. This approach caches rows of Mπ and incrementally
updates them after transitioning from their corresponding states. Specifically, following each
state transition s! s0 each element of row s is updated as follows:

MpÖs; :Ü MpÖs; :Ü á aSRâ1s á gMpÖs0; :Ü �MpÖs; :Üä; Ö10Ü

where 1s is the vector of all zeros except for a 1 in the sth position. Mπ(s,:) is used as input to
another TD learning stage, this time to learn the weights w for predicting expected future
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input. The update rule for that input, Mπ(s,:), is also based on a TD learning rule, but here
applied to learning to predict cumulative future state occupancies. This uses a vector-valued
error signal to update an entire row of Mπ at each step. Crucially, despite the functional simi-
larity between this rule and the TD update prescribed to dopamine, we do not suggest that
dopamine carries this second error signal. Neurally, this sort of learning might, instead, be
implemented using Hebbian associative learning between adjacent consecutive states [55],
with decaying eligibility traces (like TD(1)) to capture longer-run dependencies. Lastly,
although we have defined the successor representation over tabular representations of states, is
also possible to combine the SR with function approximation and distributed representations
in order to reduce its dimensionality [21,56].

Behavioral adequacy. SR-TD is capable of solving some reward revaluation experiments.
For similar reasons, SR-TD can solve sensory preconditioning (e.g. [37]) and reward devalua-
tion tasks (e.g. [6,28,35,36]), both of which turn on an analogous ability to update behavior
when state transition probabilities are held constant but reward values are changed. Evidence
for model-based behavior in animals and humans has typically come from these types of tasks,
suggesting that SR-TD could underlie a good proportion of behavior considered to be model-
based. However, SR-TD is incapable of solving seemingly analogous tasks that require replan-
ning under a transition rather than a reward change. Because there is at least some evidence
from the early literature [57] that animals can adapt correctly to such detour situations, we
suggest that this inflexibility prevents SR-TD, on its own, from being a plausible mechanism
for the full repertoire of model-based behavior.

Algorithm 2: Dynamic recomputation of the successor representation
(SR-MB)

Here, we explore a novel “model-based” approach, SR-MB, for constructing the expected state
occupancy vector Mπ(s,:). SR-MB learns a one-step transition model, Tπ and uses it, at decision
time, to derive a solution to Eq 9. One key constraint on a model-based implementation sug-
gested by the data is that the computation should be staged in a way consistent with the archi-
tecture suggested by Fig 1A. Specifically, the TD architecture in Fig 1A suggests that, because
the states are represented in cortex (or hippocampus) and weights (which capture information
about rewards) and value are represented in downstream cortico-striatal synapses and medium
spiny striatal neurons, information about R(s,a) and V(s) should not be used in the online con-
struction of states. For the SR approach, this implies that M be constructed without using direct
knowledge of R(s,a) or V(s). As we see below, this serial architecture–a cortical state-prediction
stage providing input for a subcortical reward-prediction stage–if true, would impose interest-
ing limitations on the resulting behavior.

To construct Mπ(s,:), SR-MB first learns the one-step state transition matrix Tπ, imple-
mented in our simulations through separate learning of P(s0|s,a) as well as π(a|s), the agent’s
previously expressed decision policy (see Methods). Prior to each decision, Tπ is used to com-
pute a solution to Eq 9. This solution can be expressed in either of two forms. A given row, s,
of M can be computed individually as the sum of n-step transition probabilities starting from
state s:
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Alternatively, matrix inversion can be used to solve for the entire successor matrix at once:
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and thus would approach the barricade rather than taking a detour on the first visit back to S.
As shown in supplemental materials, the depth-limited model-free algorithm also fails this test
(S1 Table). A fully model-based algorithm (not shown) does make the correct choice in this
case.

Interim discussion

Biological plausibility. The reward learning stage of this rule (learning weights w to map
Mπ(s,:) to Vπ(s)) is the standard dopaminergic TD rule, Eqs 4 and 8, operating over a new

Fig 4. Behavior of SR-TD. a) One-step of model-based lookahead combined with TD learning applied to punctate representations
cannot solve the latent learning task. Median value function (grayscale) and implied policy (arrows) are shown immediately after the
agent learns about reward in latent learning task. b) SR-TD can solve the latent learning task. Median value function (grayscale) and
implied policy (arrows) are shown immediately after the agent learns about reward in latent learning task. c) SR-TD can only update
predicted future state occupancies following direct experience with states and their multi-step successors. For instance, if SR-TD
were to learn that s” no longer follows s’, it would not be able to infer that state s” no longer follows state s. Whether animals make
this sort of inference is tested in the detour task. d) SR-TD cannot solve detour problems. Median value function (grayscale) and
implied policy (arrows) are shown after SR-TD encounters barrier in detour task. SR-TD fails to update decision policy to reflect the
new shortest path.

https://doi.org/10.1371/journal.pcbi.1005768.g004
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a predictive aspect reflecting knowledge of the state transitions P(s0|s,a), at least in terms of
aggregate occupancy, separate from the state/action rewards R(s,a).

This approach may thus offer a solution to how flexible, seemingly model-based choices
can be implemented, and indeed can arise from the same dopaminergic-striatal circuitry that
carries out model-free TD learning. What remains to be shown is whether algorithms based
on this strategy–applying the SR as input to TD learning–can produce the full range of model-
based behaviors. In the remainder of this paper, we simulate the behavior of such algorithms
to explore this question.

To simulate learning using the SR, we need to also simulate how the successor matrix Mπ is
itself produced from experience. Mπ can be defined through a recursive equation that is
directly analogous to Eqs 1 and 2:
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where 1s is the vector of all zeros except for a 1 in the sth position and Tπ is the one-step state
transition matrix that is dependent on π, Tπ(s,s0) = ∑aπ(a|s) P(s0|s,a).

Similar to how approaches to estimating V are derived from Eqs 1 and 2, one could derive
analogous approaches to estimating Mπ from Eq 9. Specifically, one could utilize a “model-
based” approach that would learn Tπ and use it iteratively to derive a solution for Mπ.

Fig 3. Example state representations. a) Agent position (rodent image) in a maze whose hallways are
indicated by grey. b) Punctate representation of the agent’s current state. Model-free behavior results from TD
computation applied to this representation c,d) Possible successor representations of agent’s state. Model-
based behavior may result from TD applied to this type of representation. The successor representation
depends on the action selection policy the agent is expected to follow in future states. The figures show the
representation of the current state under a random policy (c) versus a policy favoring rightward moves (d).

https://doi.org/10.1371/journal.pcbi.1005768.g003
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Alternatively, a TD learning approach could be taken to learn Mπ directly, without use of a
one-step model Tπ. (This approach is analogous to model-free TD methods for learning V,
though it is arguably not really model-free since Mπ is itself a sort of long-run transition
model.) This TD learning approach would cache rows of M and update them after transition-
ing from their corresponding states, by moving the cached row closer to a one-sample estimate
of the right hand side of Eq 9. Lastly, such TD updates could also occur offline, using simulated
or previously experienced samples. This approach for learning Mπ would be comparable to the
Dyna approach for learning V. The three models we consider below correspond to these three
different possibilities.

Finally, note that SR-based algorithms have favorable computational properties; in particu-
lar, at choice time, given Mπ (e.g. if it is learned and cached rather than computed from a one-
step model), SR can compute values Vπ with a single dot product (e.g., a single layer of a linear
neural network, Eq 7), analogous to model-free TD algorithms. This is in contrast to the multi-
ple steps of iterative computation required at choice time for computing value via Eq 1 in stan-
dard model-based approaches. This comes at the cost of storing the successor matrix Mπ: if S is
the number of states in the task, the SR matrix has a number of entries equal to S2. Such entries
of Mπ can be stored as the (all-to-all) set of weights from a single layer of a neural network
mapping input states to their successor representation.

Results

In the following sections, we explore the behavioral consequences of each of these strategies.
We structure the results as follows. For each learning method, we first present the algorithm.
Then we present the results of simulations using that algorithm. The purpose of simulations is
to verify our qualitative reasoning about the behavior of the algorithm and illustrate how the
algorithm’s behavior compares to that of model-based dynamic programming methods. These
simulations also suggest experiments that could be used to identify whether an animal or
human were planning using such a strategy. Each task that we simulate is designed to be a cate-
gorical test of the algorithm. Following some change in the task to which the agent must
respond, some of the algorithms can arrive at the correct decision without additional experi-
ence, but other algorithms cannot. Such failures are due to the computational properties of the
algorithms themselves and are thus parameter-independent. To ensure that this is the case, for
each simulation presented in the results, we have verified that the qualitative result can be
observed robustly under a wide range of parameter settings. In general, there are parameter
settings under which models, which are demonstrated below to succeed in a given task, can be
made to fail it. However, there are no parameter settings under which a model that is shown
below to fail a given task will pass it (S1 Table).

For each algorithm, we discuss its biological plausibility as well as how that algorithm’s per-
formance lines up with that of animals.

Algorithm 1: The original successor representation (SR-TD)

The original SR [15] (which we call SR-TD) constructs the future state occupancy predictions
Mπ using a TD learning approach. This approach caches rows of Mπ and incrementally
updates them after transitioning from their corresponding states. Specifically, following each
state transition s! s0 each element of row s is updated as follows:
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where 1s is the vector of all zeros except for a 1 in the sth position. Mπ(s,:) is used as input to
another TD learning stage, this time to learn the weights w for predicting expected future
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input. The update rule for that input, Mπ(s,:), is also based on a TD learning rule, but here
applied to learning to predict cumulative future state occupancies. This uses a vector-valued
error signal to update an entire row of Mπ at each step. Crucially, despite the functional simi-
larity between this rule and the TD update prescribed to dopamine, we do not suggest that
dopamine carries this second error signal. Neurally, this sort of learning might, instead, be
implemented using Hebbian associative learning between adjacent consecutive states [55],
with decaying eligibility traces (like TD(1)) to capture longer-run dependencies. Lastly,
although we have defined the successor representation over tabular representations of states, is
also possible to combine the SR with function approximation and distributed representations
in order to reduce its dimensionality [21,56].

Behavioral adequacy. SR-TD is capable of solving some reward revaluation experiments.
For similar reasons, SR-TD can solve sensory preconditioning (e.g. [37]) and reward devalua-
tion tasks (e.g. [6,28,35,36]), both of which turn on an analogous ability to update behavior
when state transition probabilities are held constant but reward values are changed. Evidence
for model-based behavior in animals and humans has typically come from these types of tasks,
suggesting that SR-TD could underlie a good proportion of behavior considered to be model-
based. However, SR-TD is incapable of solving seemingly analogous tasks that require replan-
ning under a transition rather than a reward change. Because there is at least some evidence
from the early literature [57] that animals can adapt correctly to such detour situations, we
suggest that this inflexibility prevents SR-TD, on its own, from being a plausible mechanism
for the full repertoire of model-based behavior.

Algorithm 2: Dynamic recomputation of the successor representation
(SR-MB)

Here, we explore a novel “model-based” approach, SR-MB, for constructing the expected state
occupancy vector Mπ(s,:). SR-MB learns a one-step transition model, Tπ and uses it, at decision
time, to derive a solution to Eq 9. One key constraint on a model-based implementation sug-
gested by the data is that the computation should be staged in a way consistent with the archi-
tecture suggested by Fig 1A. Specifically, the TD architecture in Fig 1A suggests that, because
the states are represented in cortex (or hippocampus) and weights (which capture information
about rewards) and value are represented in downstream cortico-striatal synapses and medium
spiny striatal neurons, information about R(s,a) and V(s) should not be used in the online con-
struction of states. For the SR approach, this implies that M be constructed without using direct
knowledge of R(s,a) or V(s). As we see below, this serial architecture–a cortical state-prediction
stage providing input for a subcortical reward-prediction stage–if true, would impose interest-
ing limitations on the resulting behavior.

To construct Mπ(s,:), SR-MB first learns the one-step state transition matrix Tπ, imple-
mented in our simulations through separate learning of P(s0|s,a) as well as π(a|s), the agent’s
previously expressed decision policy (see Methods). Prior to each decision, Tπ is used to com-
pute a solution to Eq 9. This solution can be expressed in either of two forms. A given row, s,
of M can be computed individually as the sum of n-step transition probabilities starting from
state s:
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Alternatively, matrix inversion can be used to solve for the entire successor matrix at once:
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SR-MB cannot solve novel policy revaluation tasks. What are the behavioral implica-
tions of SR-MB estimating values using the policy that was expressed during learning? Con-
sider a situation where state s’ can be reached from state s using action a, but SR-MB learned
from past behavior that π(a|s) is near 0 (Fig 5B). Then it will not include rewards at s’ in the
value of s, even if separately learning (say, by visiting s’ but not in a trajectory starting from s)

Fig 5. Behavior of SR-MB. a) SR-MB can solve the detour task. Median value function (grayscale) and implied policy (arrows) after SR-MB encounters
barrier. b) SR-MB determines successor states relative to a cached policy. If SR-MB learned from previous behavior that it will always select action a1, the
value of s would become insensitive to changes in reward at s2’. C) Novel “policy” revaluation task. After a phase of random exploration, we place a
reward in location R1. The agent completes a series of trials that alternatively start from locations S1 and S2 and end when R1 is reached. We then place
a larger reward in location R2 and record the agent’s value function and implied policy upon encountering it. d) SR-MB cannot solve the novel “policy”
revaluation task. Median value function and implied policy recorded immediately after SR-MB learns about reward placed in location R2. Notice that if the
agent were to start from location S1, its policy would suboptimally lead it to the smaller reward at R1.

https://doi.org/10.1371/journal.pcbi.1005768.g005
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and thus would approach the barricade rather than taking a detour on the first visit back to S.
As shown in supplemental materials, the depth-limited model-free algorithm also fails this test
(S1 Table). A fully model-based algorithm (not shown) does make the correct choice in this
case.

Interim discussion

Biological plausibility. The reward learning stage of this rule (learning weights w to map
Mπ(s,:) to Vπ(s)) is the standard dopaminergic TD rule, Eqs 4 and 8, operating over a new

Fig 4. Behavior of SR-TD. a) One-step of model-based lookahead combined with TD learning applied to punctate representations
cannot solve the latent learning task. Median value function (grayscale) and implied policy (arrows) are shown immediately after the
agent learns about reward in latent learning task. b) SR-TD can solve the latent learning task. Median value function (grayscale) and
implied policy (arrows) are shown immediately after the agent learns about reward in latent learning task. c) SR-TD can only update
predicted future state occupancies following direct experience with states and their multi-step successors. For instance, if SR-TD
were to learn that s” no longer follows s’, it would not be able to infer that state s” no longer follows state s. Whether animals make
this sort of inference is tested in the detour task. d) SR-TD cannot solve detour problems. Median value function (grayscale) and
implied policy (arrows) are shown after SR-TD encounters barrier in detour task. SR-TD fails to update decision policy to reflect the
new shortest path.

https://doi.org/10.1371/journal.pcbi.1005768.g004

The successor representation as a mechanism for model-based behavior

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005768 September 25, 2017 13 / 35

and thus would approach the barricade rather than taking a detour on the first visit back to S.
As shown in supplemental materials, the depth-limited model-free algorithm also fails this test
(S1 Table). A fully model-based algorithm (not shown) does make the correct choice in this
case.

Interim discussion

Biological plausibility. The reward learning stage of this rule (learning weights w to map
Mπ(s,:) to Vπ(s)) is the standard dopaminergic TD rule, Eqs 4 and 8, operating over a new

Fig 4. Behavior of SR-TD. a) One-step of model-based lookahead combined with TD learning applied to punctate representations
cannot solve the latent learning task. Median value function (grayscale) and implied policy (arrows) are shown immediately after the
agent learns about reward in latent learning task. b) SR-TD can solve the latent learning task. Median value function (grayscale) and
implied policy (arrows) are shown immediately after the agent learns about reward in latent learning task. c) SR-TD can only update
predicted future state occupancies following direct experience with states and their multi-step successors. For instance, if SR-TD
were to learn that s” no longer follows s’, it would not be able to infer that state s” no longer follows state s. Whether animals make
this sort of inference is tested in the detour task. d) SR-TD cannot solve detour problems. Median value function (grayscale) and
implied policy (arrows) are shown after SR-TD encounters barrier in detour task. SR-TD fails to update decision policy to reflect the
new shortest path.

https://doi.org/10.1371/journal.pcbi.1005768.g004

The successor representation as a mechanism for model-based behavior

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005768 September 25, 2017 13 / 35



Quentin HuysRL SWC

Human successor learning

Momennejad et al., 2017 Nat. Hum. Beh.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLES NATURE HUMAN BEHAVIOUR

time on the task (trial number) on the revaluation score. Because a 
change in model choice would only affect revaluation scores of non-
control trials, we eliminated control trials from this analysis. For 
experiment 1, this analysis revealed a significant effect of time on 
task on revaluation score (F1, 57.259 =  9.9171, P <  0.01) indicating that 
participants’ ability to perform the task improved over time. If such 
a change in strategy over the task were responsible for the difference 
in revaluation score between reward and transition revaluation con-
ditions, we would expect the effect of trial number on revaluation 
score to interact with the revaluation condition. However, there was 
no significant interaction of this effect with revaluation condition 
(F1, 68.284 =  0.15436, P =  0.695). For experiment 2, there was no sig-
nificant effect of time on task (trial number) on revaluation score 
(F1, 190.6, P =  0.076). There was also no significant interaction of time 
on task with revaluation condition (F2, 69.49, P =  0.367). Thus, time on 
task cannot explain the difference between the conditions.

Possibility 2: differences in learning and updating T, M and R. For 
simplicity, we assumed that during the re-learning phase, the MB 
learner fully updates the experienced transitions in the transition 
matrix (T) and the SR learner fully updates the successor matrix M. 
However, performance on reward revaluation is not perfect. Could 
this be due to different learning rates for R and T? The re-learning 
phase of experiment 1 included a probe trial once every five trials 
in which participants were required to choose between the second-
level state in either sequence. Participants were unable to progress 
to the test phase until they chose the correct (highest value) state 
three times in a row. A repeated-measures analysis of variance was 
conducted to investigate the effect of revaluation condition (limited 
to reward revaluation trials and transition revaluation trials) on the 
number of trials required to meet the criterion for moving to the 
test phase. There was no significant effect of revaluation condition 
(F1, 924 =  0.549, P =  0.359). Thus, we found no evidence for learning rate 
differences between conditions. Furthermore, the results from the 

policy revaluation condition in experiment 2 show that the findings  
are not merely limited to a difference between reward versus transi-
tion learning, since in policy revaluation there are no changes in the 
transition probabilities (not updating T or SR) and yet the behav-
iour is more similar to transition revaluation rather than reward 
revaluation. Taken together, these findings are consistent with the 
idea that the differences between conditions are not merely due to 
differences in reward learning versus transition learning.

Discussion
The brain must trade off the computational costs of solving complex, 
dynamic decision tasks against the costs of making suboptimal deci-
sions due to employing computational shortcuts. It has, accordingly, 
been argued that compared with MB solutions, simple MF learning 
saves time and computation at the decision time at the cost of occa-
sionally producing maladaptive choices in particular circumstances, 
such as rats working for devalued food. Here, we consider a third 
strategy based on the SR, which is noteworthy for two reasons. First, 
the SR caches temporal abstractions of future states. At the decision 
time, while MB relies on forward search to evaluate actions, the SR 
simply retrieves cached representations of successor states and pro-
duces rapid, flexible behaviours, which in many circumstances were 
previously taken as signatures of the more costly MB deliberation. 
Second, the SR predicts (and our experiments confirmed) a novel 
asymmetric pattern of errors across different types of revaluation 
task. While MB performs equally well on all revaluation tests and 
MF solves none, the SR can use its cached representations to readily 
solve reward revaluation, but not transition or policy revaluation.

Previously, revaluation tasks—mostly reward revaluation—have 
been useful in distinguishing MB from MF predictions. However, 
MB and SR-based algorithms make similar predictions for standard 
reward revaluation tasks, which account for the bulk of evidence 
previously argued to support MB learning. By exploring other vari-
ants of revaluation (transition and policy revaluation), we were 
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Fig. 6 | Schematic of the active sequential learning task. The underlying structure of each condition in experiment 2 is represented. Numbered circles 
denote different states (rooms in a castle), and arrows denote unidirectional actions available upon entering that state and the deterministic transition 
associated with those actions (that flow always from states with lower numbers to higher numbers; top to bottom in the schematic). Unavailable actions 
in states 2 and 3 are not shown. On each trial, participants were placed in one of the six states (castle rooms) and were required to make choices between 
upcoming states until they arrived at a terminal state and collected its reward. For a given phase of a given condition, trials began only in the states that 
are displayed in the figure for that condition and phase. For example, trials in phase 2 of the reward revaluation condition began only from states 4, 5 and 
6. In all conditions, state 1 contained two actions, both of which were always available. States 2 and 3 each contained three actions; however, at any given 
time only two were available. Upon arriving in either state 2 or state 3, the participant observed which actions were available and which were unavailable. 
For each condition, we measured whether participants changed their state 1 action choice between the end of phase 1 and the single probe trial in phase 3 
from the action leading to state 3 to the action leading to state 2.

NATURE HUMAN BEHAVIOUR | VOL 1 | SEPTEMBER 2017 | 680–692 | www.nature.com/nathumbehav686

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLESNATURE HUMAN BEHAVIOUR

able to provide direct empirical support for SR-based algorithms in 
human behaviour. The crucial prediction made by the SR account, 
confirmed in two experiments, was that human participants would 
be more sensitive to changes in reward structure than to changes in 
transition and policy structures. Notably, even in the absence of any 
changes in the transition structure in the policy revaluation condi-
tion, experiment 2 showed that participants were also less sensitive 
to a shift in the optimal policy at intermediate states compared with 
the reward revaluation condition. This is consistent with SR-based 
algorithms but inconsistent with either MB algorithms or accounts 
of different MF–MB arbitration strategies23 following reward versus 
state prediction errors.

It is important to stress that the SR is only one of a number of can-
didates for exact or approximate value computation mechanisms, 
and our study aimed to find affirmative evidence for its use rather 
than to argue that it can explain all choice behaviour on its own. 
Studies using tasks with detour and shortcut manipulations24, par-
ticularly in the spatial domain, are conceptually similar to our tran-
sition revaluation. As in our study, some previous research suggests 
that organisms can in some circumstances also solve these tasks25. 
These results (together with more explicit evidence for step-by-step 
planning in tasks like chess or in evaluating truly novel compound 
concepts like tea jelly2,26) suggest some residual role for fully MB 
computation—or, alternatively, that the brain employs additional 
mechanisms, such as replay-based learning that would achieve the 
same effect20.

To reiterate, although our findings argue against a pure MB 
account (which would handle all our revaluation conditions with 
equal ease, or symmetrically), they also argue against a pure SR 
account, which predicts complete insensitivity to transition and 
policy revaluation (see Figs. 2 and 8). Our data show that people 
display significant revaluation behaviour even in these conditions, 
although less than in the reward revaluation condition. Such results 
are expected under a hybrid SR–MB model in which decision poli-
cies reflect a combination of value estimates from the MB strategy 
and the SR. We demonstrate that this hybrid theory provides a close 
fit to our data. It is best to think of the combination as a rough proxy 
for multi-system interactions, which are probably more complex22 
than what we have sketched here. For instance, although we did not 
formally include or estimate purely MF learning in our modelling 
here, this is only because it predicts equally bad performance across 
all of our experimental revaluation conditions. We do not mean to 
deny the substantial evidence in favour of MF learning in certain 
circumstances, such as after overtraining. Indeed, MF learning may 
contribute to our finding that participants do not achieve 100% 
revaluation performance in any of our conditions, accounting for 
the slight difference between unnecessary switching in the control 
condition (which should measure non-specific sloppiness, such as 
forgetting or choice randomness) and failure to fully adjust in the 
reward revaluation condition (see Figs. 3 and 6).

Insofar as our results suggest that participants rely on a num-
ber of different evaluation strategies, they highlight the question of 
how the brain determines when to rely on each strategy (an arbitra-
tion problem). One general possibility is that humans use a form 
of meta-decision-making, weighing the costs and benefits of extra 
deliberation to determine when to invoke MB computation27–29. 
This basic approach might fruitfully be extended to MB versus SR 
as well as MB versus MF arbitration. A meta-rational agent would 
be expected to mostly use the computationally cheap SR for flex-
ible, goal-directed behaviour (or the even simpler MF strategy for 
automaticity in stable environments), but to sometimes employ the 
more computationally intensive MB strategy to correct the SR-based 
estimate when needed (for example, when transition structure 
changes). Given finite computational resources (and the problem 
that perfectly recognizing the circumstances when MB is required 
is potentially as hard as MB planning itself) this correction could be 

insufficient, leaving a residual trace of the biases induced by the SR. 
Our results on response times in the first experiment may provide a 
hint of such a hybrid strategy, since the MB system should take lon-
ger and might be more likely invoked in the transition revaluation 
condition (where it is actually needed).

Another form of SR hybrid could be realized using the MB 
system (a cognitive map), or episodic memory replay, as a simula-
tor to generate data for training the SR. This resembles the family 
of Dyna algorithms20. Evidence from rodents and human stud-
ies showing that offline replay of sequences during rest and sleep 
enhances memory consolidation30 and learning new trajectories31,32. 
Because the SR is updated via the simulations of the MB system or 
episodic memory offline, this Dyna-like hybrid model retains the 
SR’s advantage of fast action evaluation at the decision time (Fig. 8). 
Updating predictive representations via replay is in line with recent 
attention to the role of memory systems in planning and decision-
making22,33. These different realizations of an SR–MB hybrid are 
essentially speculative in the absence of direct evidence. Further 
work is required to adjudicate between them.

All these models highlight the fact that the SR is itself a sort of 
world model, not entirely unlike the sorts of cognitive maps usu-
ally associated with the hippocampus. The learned representation 
is a predictive model, which allows the mental simulation of distal 
future events rapidly, at least in the aggregate. It differs from the 
one-step model representations learned and used in standard MB 
learning, mainly because it aggregates these predictions over many 
future time steps. This aggregation introduces a new free parameter: 
the timescale over which future events are aggregated. In theory, the 
prediction timescale (known as the ‘planning horizon’) is controlled 
by the discount factor over future state occupancies in equation (1) 
(see Methods), and need not, in general, be the same as the agent’s 
time discount preference over delayed rewards34. Instead, we predict 
(and leave to future work to investigate) that the planning horizon 
should rationally be influenced by the statistical structure of experi-
ence, such as the stability or volatility of transitions and rewards in 
the environment. In other words, the structures of the environment 
should be reflected in the representations that are learned and stored 
in memory35. For instance, in more stable environments, it may be 
rational to cache representations with multi-step contingencies over 
longer planning horizons, compared with volatile environments, 
where transition contingencies change frequently. In the unstable 
case, it would be counterproductive to cache contingencies beyond 
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time on the task (trial number) on the revaluation score. Because a 
change in model choice would only affect revaluation scores of non-
control trials, we eliminated control trials from this analysis. For 
experiment 1, this analysis revealed a significant effect of time on 
task on revaluation score (F1, 57.259 =  9.9171, P <  0.01) indicating that 
participants’ ability to perform the task improved over time. If such 
a change in strategy over the task were responsible for the difference 
in revaluation score between reward and transition revaluation con-
ditions, we would expect the effect of trial number on revaluation 
score to interact with the revaluation condition. However, there was 
no significant interaction of this effect with revaluation condition 
(F1, 68.284 =  0.15436, P =  0.695). For experiment 2, there was no sig-
nificant effect of time on task (trial number) on revaluation score 
(F1, 190.6, P =  0.076). There was also no significant interaction of time 
on task with revaluation condition (F2, 69.49, P =  0.367). Thus, time on 
task cannot explain the difference between the conditions.

Possibility 2: differences in learning and updating T, M and R. For 
simplicity, we assumed that during the re-learning phase, the MB 
learner fully updates the experienced transitions in the transition 
matrix (T) and the SR learner fully updates the successor matrix M. 
However, performance on reward revaluation is not perfect. Could 
this be due to different learning rates for R and T? The re-learning 
phase of experiment 1 included a probe trial once every five trials 
in which participants were required to choose between the second-
level state in either sequence. Participants were unable to progress 
to the test phase until they chose the correct (highest value) state 
three times in a row. A repeated-measures analysis of variance was 
conducted to investigate the effect of revaluation condition (limited 
to reward revaluation trials and transition revaluation trials) on the 
number of trials required to meet the criterion for moving to the 
test phase. There was no significant effect of revaluation condition 
(F1, 924 =  0.549, P =  0.359). Thus, we found no evidence for learning rate 
differences between conditions. Furthermore, the results from the 

policy revaluation condition in experiment 2 show that the findings  
are not merely limited to a difference between reward versus transi-
tion learning, since in policy revaluation there are no changes in the 
transition probabilities (not updating T or SR) and yet the behav-
iour is more similar to transition revaluation rather than reward 
revaluation. Taken together, these findings are consistent with the 
idea that the differences between conditions are not merely due to 
differences in reward learning versus transition learning.

Discussion
The brain must trade off the computational costs of solving complex, 
dynamic decision tasks against the costs of making suboptimal deci-
sions due to employing computational shortcuts. It has, accordingly, 
been argued that compared with MB solutions, simple MF learning 
saves time and computation at the decision time at the cost of occa-
sionally producing maladaptive choices in particular circumstances, 
such as rats working for devalued food. Here, we consider a third 
strategy based on the SR, which is noteworthy for two reasons. First, 
the SR caches temporal abstractions of future states. At the decision 
time, while MB relies on forward search to evaluate actions, the SR 
simply retrieves cached representations of successor states and pro-
duces rapid, flexible behaviours, which in many circumstances were 
previously taken as signatures of the more costly MB deliberation. 
Second, the SR predicts (and our experiments confirmed) a novel 
asymmetric pattern of errors across different types of revaluation 
task. While MB performs equally well on all revaluation tests and 
MF solves none, the SR can use its cached representations to readily 
solve reward revaluation, but not transition or policy revaluation.

Previously, revaluation tasks—mostly reward revaluation—have 
been useful in distinguishing MB from MF predictions. However, 
MB and SR-based algorithms make similar predictions for standard 
reward revaluation tasks, which account for the bulk of evidence 
previously argued to support MB learning. By exploring other vari-
ants of revaluation (transition and policy revaluation), we were 
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Fig. 6 | Schematic of the active sequential learning task. The underlying structure of each condition in experiment 2 is represented. Numbered circles 
denote different states (rooms in a castle), and arrows denote unidirectional actions available upon entering that state and the deterministic transition 
associated with those actions (that flow always from states with lower numbers to higher numbers; top to bottom in the schematic). Unavailable actions 
in states 2 and 3 are not shown. On each trial, participants were placed in one of the six states (castle rooms) and were required to make choices between 
upcoming states until they arrived at a terminal state and collected its reward. For a given phase of a given condition, trials began only in the states that 
are displayed in the figure for that condition and phase. For example, trials in phase 2 of the reward revaluation condition began only from states 4, 5 and 
6. In all conditions, state 1 contained two actions, both of which were always available. States 2 and 3 each contained three actions; however, at any given 
time only two were available. Upon arriving in either state 2 or state 3, the participant observed which actions were available and which were unavailable. 
For each condition, we measured whether participants changed their state 1 action choice between the end of phase 1 and the single probe trial in phase 3 
from the action leading to state 3 to the action leading to state 2.
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able to provide direct empirical support for SR-based algorithms in 
human behaviour. The crucial prediction made by the SR account, 
confirmed in two experiments, was that human participants would 
be more sensitive to changes in reward structure than to changes in 
transition and policy structures. Notably, even in the absence of any 
changes in the transition structure in the policy revaluation condi-
tion, experiment 2 showed that participants were also less sensitive 
to a shift in the optimal policy at intermediate states compared with 
the reward revaluation condition. This is consistent with SR-based 
algorithms but inconsistent with either MB algorithms or accounts 
of different MF–MB arbitration strategies23 following reward versus 
state prediction errors.

It is important to stress that the SR is only one of a number of can-
didates for exact or approximate value computation mechanisms, 
and our study aimed to find affirmative evidence for its use rather 
than to argue that it can explain all choice behaviour on its own. 
Studies using tasks with detour and shortcut manipulations24, par-
ticularly in the spatial domain, are conceptually similar to our tran-
sition revaluation. As in our study, some previous research suggests 
that organisms can in some circumstances also solve these tasks25. 
These results (together with more explicit evidence for step-by-step 
planning in tasks like chess or in evaluating truly novel compound 
concepts like tea jelly2,26) suggest some residual role for fully MB 
computation—or, alternatively, that the brain employs additional 
mechanisms, such as replay-based learning that would achieve the 
same effect20.

To reiterate, although our findings argue against a pure MB 
account (which would handle all our revaluation conditions with 
equal ease, or symmetrically), they also argue against a pure SR 
account, which predicts complete insensitivity to transition and 
policy revaluation (see Figs. 2 and 8). Our data show that people 
display significant revaluation behaviour even in these conditions, 
although less than in the reward revaluation condition. Such results 
are expected under a hybrid SR–MB model in which decision poli-
cies reflect a combination of value estimates from the MB strategy 
and the SR. We demonstrate that this hybrid theory provides a close 
fit to our data. It is best to think of the combination as a rough proxy 
for multi-system interactions, which are probably more complex22 
than what we have sketched here. For instance, although we did not 
formally include or estimate purely MF learning in our modelling 
here, this is only because it predicts equally bad performance across 
all of our experimental revaluation conditions. We do not mean to 
deny the substantial evidence in favour of MF learning in certain 
circumstances, such as after overtraining. Indeed, MF learning may 
contribute to our finding that participants do not achieve 100% 
revaluation performance in any of our conditions, accounting for 
the slight difference between unnecessary switching in the control 
condition (which should measure non-specific sloppiness, such as 
forgetting or choice randomness) and failure to fully adjust in the 
reward revaluation condition (see Figs. 3 and 6).

Insofar as our results suggest that participants rely on a num-
ber of different evaluation strategies, they highlight the question of 
how the brain determines when to rely on each strategy (an arbitra-
tion problem). One general possibility is that humans use a form 
of meta-decision-making, weighing the costs and benefits of extra 
deliberation to determine when to invoke MB computation27–29. 
This basic approach might fruitfully be extended to MB versus SR 
as well as MB versus MF arbitration. A meta-rational agent would 
be expected to mostly use the computationally cheap SR for flex-
ible, goal-directed behaviour (or the even simpler MF strategy for 
automaticity in stable environments), but to sometimes employ the 
more computationally intensive MB strategy to correct the SR-based 
estimate when needed (for example, when transition structure 
changes). Given finite computational resources (and the problem 
that perfectly recognizing the circumstances when MB is required 
is potentially as hard as MB planning itself) this correction could be 

insufficient, leaving a residual trace of the biases induced by the SR. 
Our results on response times in the first experiment may provide a 
hint of such a hybrid strategy, since the MB system should take lon-
ger and might be more likely invoked in the transition revaluation 
condition (where it is actually needed).

Another form of SR hybrid could be realized using the MB 
system (a cognitive map), or episodic memory replay, as a simula-
tor to generate data for training the SR. This resembles the family 
of Dyna algorithms20. Evidence from rodents and human stud-
ies showing that offline replay of sequences during rest and sleep 
enhances memory consolidation30 and learning new trajectories31,32. 
Because the SR is updated via the simulations of the MB system or 
episodic memory offline, this Dyna-like hybrid model retains the 
SR’s advantage of fast action evaluation at the decision time (Fig. 8). 
Updating predictive representations via replay is in line with recent 
attention to the role of memory systems in planning and decision-
making22,33. These different realizations of an SR–MB hybrid are 
essentially speculative in the absence of direct evidence. Further 
work is required to adjudicate between them.

All these models highlight the fact that the SR is itself a sort of 
world model, not entirely unlike the sorts of cognitive maps usu-
ally associated with the hippocampus. The learned representation 
is a predictive model, which allows the mental simulation of distal 
future events rapidly, at least in the aggregate. It differs from the 
one-step model representations learned and used in standard MB 
learning, mainly because it aggregates these predictions over many 
future time steps. This aggregation introduces a new free parameter: 
the timescale over which future events are aggregated. In theory, the 
prediction timescale (known as the ‘planning horizon’) is controlled 
by the discount factor over future state occupancies in equation (1) 
(see Methods), and need not, in general, be the same as the agent’s 
time discount preference over delayed rewards34. Instead, we predict 
(and leave to future work to investigate) that the planning horizon 
should rationally be influenced by the statistical structure of experi-
ence, such as the stability or volatility of transitions and rewards in 
the environment. In other words, the structures of the environment 
should be reflected in the representations that are learned and stored 
in memory35. For instance, in more stable environments, it may be 
rational to cache representations with multi-step contingencies over 
longer planning horizons, compared with volatile environments, 
where transition contingencies change frequently. In the unstable 
case, it would be counterproductive to cache contingencies beyond 
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Fig. 7 | Behavioural performance in a sequential decision task. Proportion 
of participants (n =  88) who changed preference following the re-learning 
phase for reward, transition and policy revaluation as well as the no 
revaluation control condition. The error bars represent 1 standard error of 
the proportion estimate.
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time on the task (trial number) on the revaluation score. Because a 
change in model choice would only affect revaluation scores of non-
control trials, we eliminated control trials from this analysis. For 
experiment 1, this analysis revealed a significant effect of time on 
task on revaluation score (F1, 57.259 =  9.9171, P <  0.01) indicating that 
participants’ ability to perform the task improved over time. If such 
a change in strategy over the task were responsible for the difference 
in revaluation score between reward and transition revaluation con-
ditions, we would expect the effect of trial number on revaluation 
score to interact with the revaluation condition. However, there was 
no significant interaction of this effect with revaluation condition 
(F1, 68.284 =  0.15436, P =  0.695). For experiment 2, there was no sig-
nificant effect of time on task (trial number) on revaluation score 
(F1, 190.6, P =  0.076). There was also no significant interaction of time 
on task with revaluation condition (F2, 69.49, P =  0.367). Thus, time on 
task cannot explain the difference between the conditions.

Possibility 2: differences in learning and updating T, M and R. For 
simplicity, we assumed that during the re-learning phase, the MB 
learner fully updates the experienced transitions in the transition 
matrix (T) and the SR learner fully updates the successor matrix M. 
However, performance on reward revaluation is not perfect. Could 
this be due to different learning rates for R and T? The re-learning 
phase of experiment 1 included a probe trial once every five trials 
in which participants were required to choose between the second-
level state in either sequence. Participants were unable to progress 
to the test phase until they chose the correct (highest value) state 
three times in a row. A repeated-measures analysis of variance was 
conducted to investigate the effect of revaluation condition (limited 
to reward revaluation trials and transition revaluation trials) on the 
number of trials required to meet the criterion for moving to the 
test phase. There was no significant effect of revaluation condition 
(F1, 924 =  0.549, P =  0.359). Thus, we found no evidence for learning rate 
differences between conditions. Furthermore, the results from the 

policy revaluation condition in experiment 2 show that the findings  
are not merely limited to a difference between reward versus transi-
tion learning, since in policy revaluation there are no changes in the 
transition probabilities (not updating T or SR) and yet the behav-
iour is more similar to transition revaluation rather than reward 
revaluation. Taken together, these findings are consistent with the 
idea that the differences between conditions are not merely due to 
differences in reward learning versus transition learning.

Discussion
The brain must trade off the computational costs of solving complex, 
dynamic decision tasks against the costs of making suboptimal deci-
sions due to employing computational shortcuts. It has, accordingly, 
been argued that compared with MB solutions, simple MF learning 
saves time and computation at the decision time at the cost of occa-
sionally producing maladaptive choices in particular circumstances, 
such as rats working for devalued food. Here, we consider a third 
strategy based on the SR, which is noteworthy for two reasons. First, 
the SR caches temporal abstractions of future states. At the decision 
time, while MB relies on forward search to evaluate actions, the SR 
simply retrieves cached representations of successor states and pro-
duces rapid, flexible behaviours, which in many circumstances were 
previously taken as signatures of the more costly MB deliberation. 
Second, the SR predicts (and our experiments confirmed) a novel 
asymmetric pattern of errors across different types of revaluation 
task. While MB performs equally well on all revaluation tests and 
MF solves none, the SR can use its cached representations to readily 
solve reward revaluation, but not transition or policy revaluation.

Previously, revaluation tasks—mostly reward revaluation—have 
been useful in distinguishing MB from MF predictions. However, 
MB and SR-based algorithms make similar predictions for standard 
reward revaluation tasks, which account for the bulk of evidence 
previously argued to support MB learning. By exploring other vari-
ants of revaluation (transition and policy revaluation), we were 
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Fig. 6 | Schematic of the active sequential learning task. The underlying structure of each condition in experiment 2 is represented. Numbered circles 
denote different states (rooms in a castle), and arrows denote unidirectional actions available upon entering that state and the deterministic transition 
associated with those actions (that flow always from states with lower numbers to higher numbers; top to bottom in the schematic). Unavailable actions 
in states 2 and 3 are not shown. On each trial, participants were placed in one of the six states (castle rooms) and were required to make choices between 
upcoming states until they arrived at a terminal state and collected its reward. For a given phase of a given condition, trials began only in the states that 
are displayed in the figure for that condition and phase. For example, trials in phase 2 of the reward revaluation condition began only from states 4, 5 and 
6. In all conditions, state 1 contained two actions, both of which were always available. States 2 and 3 each contained three actions; however, at any given 
time only two were available. Upon arriving in either state 2 or state 3, the participant observed which actions were available and which were unavailable. 
For each condition, we measured whether participants changed their state 1 action choice between the end of phase 1 and the single probe trial in phase 3 
from the action leading to state 3 to the action leading to state 2.
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able to provide direct empirical support for SR-based algorithms in 
human behaviour. The crucial prediction made by the SR account, 
confirmed in two experiments, was that human participants would 
be more sensitive to changes in reward structure than to changes in 
transition and policy structures. Notably, even in the absence of any 
changes in the transition structure in the policy revaluation condi-
tion, experiment 2 showed that participants were also less sensitive 
to a shift in the optimal policy at intermediate states compared with 
the reward revaluation condition. This is consistent with SR-based 
algorithms but inconsistent with either MB algorithms or accounts 
of different MF–MB arbitration strategies23 following reward versus 
state prediction errors.

It is important to stress that the SR is only one of a number of can-
didates for exact or approximate value computation mechanisms, 
and our study aimed to find affirmative evidence for its use rather 
than to argue that it can explain all choice behaviour on its own. 
Studies using tasks with detour and shortcut manipulations24, par-
ticularly in the spatial domain, are conceptually similar to our tran-
sition revaluation. As in our study, some previous research suggests 
that organisms can in some circumstances also solve these tasks25. 
These results (together with more explicit evidence for step-by-step 
planning in tasks like chess or in evaluating truly novel compound 
concepts like tea jelly2,26) suggest some residual role for fully MB 
computation—or, alternatively, that the brain employs additional 
mechanisms, such as replay-based learning that would achieve the 
same effect20.

To reiterate, although our findings argue against a pure MB 
account (which would handle all our revaluation conditions with 
equal ease, or symmetrically), they also argue against a pure SR 
account, which predicts complete insensitivity to transition and 
policy revaluation (see Figs. 2 and 8). Our data show that people 
display significant revaluation behaviour even in these conditions, 
although less than in the reward revaluation condition. Such results 
are expected under a hybrid SR–MB model in which decision poli-
cies reflect a combination of value estimates from the MB strategy 
and the SR. We demonstrate that this hybrid theory provides a close 
fit to our data. It is best to think of the combination as a rough proxy 
for multi-system interactions, which are probably more complex22 
than what we have sketched here. For instance, although we did not 
formally include or estimate purely MF learning in our modelling 
here, this is only because it predicts equally bad performance across 
all of our experimental revaluation conditions. We do not mean to 
deny the substantial evidence in favour of MF learning in certain 
circumstances, such as after overtraining. Indeed, MF learning may 
contribute to our finding that participants do not achieve 100% 
revaluation performance in any of our conditions, accounting for 
the slight difference between unnecessary switching in the control 
condition (which should measure non-specific sloppiness, such as 
forgetting or choice randomness) and failure to fully adjust in the 
reward revaluation condition (see Figs. 3 and 6).

Insofar as our results suggest that participants rely on a num-
ber of different evaluation strategies, they highlight the question of 
how the brain determines when to rely on each strategy (an arbitra-
tion problem). One general possibility is that humans use a form 
of meta-decision-making, weighing the costs and benefits of extra 
deliberation to determine when to invoke MB computation27–29. 
This basic approach might fruitfully be extended to MB versus SR 
as well as MB versus MF arbitration. A meta-rational agent would 
be expected to mostly use the computationally cheap SR for flex-
ible, goal-directed behaviour (or the even simpler MF strategy for 
automaticity in stable environments), but to sometimes employ the 
more computationally intensive MB strategy to correct the SR-based 
estimate when needed (for example, when transition structure 
changes). Given finite computational resources (and the problem 
that perfectly recognizing the circumstances when MB is required 
is potentially as hard as MB planning itself) this correction could be 

insufficient, leaving a residual trace of the biases induced by the SR. 
Our results on response times in the first experiment may provide a 
hint of such a hybrid strategy, since the MB system should take lon-
ger and might be more likely invoked in the transition revaluation 
condition (where it is actually needed).

Another form of SR hybrid could be realized using the MB 
system (a cognitive map), or episodic memory replay, as a simula-
tor to generate data for training the SR. This resembles the family 
of Dyna algorithms20. Evidence from rodents and human stud-
ies showing that offline replay of sequences during rest and sleep 
enhances memory consolidation30 and learning new trajectories31,32. 
Because the SR is updated via the simulations of the MB system or 
episodic memory offline, this Dyna-like hybrid model retains the 
SR’s advantage of fast action evaluation at the decision time (Fig. 8). 
Updating predictive representations via replay is in line with recent 
attention to the role of memory systems in planning and decision-
making22,33. These different realizations of an SR–MB hybrid are 
essentially speculative in the absence of direct evidence. Further 
work is required to adjudicate between them.

All these models highlight the fact that the SR is itself a sort of 
world model, not entirely unlike the sorts of cognitive maps usu-
ally associated with the hippocampus. The learned representation 
is a predictive model, which allows the mental simulation of distal 
future events rapidly, at least in the aggregate. It differs from the 
one-step model representations learned and used in standard MB 
learning, mainly because it aggregates these predictions over many 
future time steps. This aggregation introduces a new free parameter: 
the timescale over which future events are aggregated. In theory, the 
prediction timescale (known as the ‘planning horizon’) is controlled 
by the discount factor over future state occupancies in equation (1) 
(see Methods), and need not, in general, be the same as the agent’s 
time discount preference over delayed rewards34. Instead, we predict 
(and leave to future work to investigate) that the planning horizon 
should rationally be influenced by the statistical structure of experi-
ence, such as the stability or volatility of transitions and rewards in 
the environment. In other words, the structures of the environment 
should be reflected in the representations that are learned and stored 
in memory35. For instance, in more stable environments, it may be 
rational to cache representations with multi-step contingencies over 
longer planning horizons, compared with volatile environments, 
where transition contingencies change frequently. In the unstable 
case, it would be counterproductive to cache contingencies beyond 
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Fig. 7 | Behavioural performance in a sequential decision task. Proportion 
of participants (n =  88) who changed preference following the re-learning 
phase for reward, transition and policy revaluation as well as the no 
revaluation control condition. The error bars represent 1 standard error of 
the proportion estimate.
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time on the task (trial number) on the revaluation score. Because a 
change in model choice would only affect revaluation scores of non-
control trials, we eliminated control trials from this analysis. For 
experiment 1, this analysis revealed a significant effect of time on 
task on revaluation score (F1, 57.259 =  9.9171, P <  0.01) indicating that 
participants’ ability to perform the task improved over time. If such 
a change in strategy over the task were responsible for the difference 
in revaluation score between reward and transition revaluation con-
ditions, we would expect the effect of trial number on revaluation 
score to interact with the revaluation condition. However, there was 
no significant interaction of this effect with revaluation condition 
(F1, 68.284 =  0.15436, P =  0.695). For experiment 2, there was no sig-
nificant effect of time on task (trial number) on revaluation score 
(F1, 190.6, P =  0.076). There was also no significant interaction of time 
on task with revaluation condition (F2, 69.49, P =  0.367). Thus, time on 
task cannot explain the difference between the conditions.

Possibility 2: differences in learning and updating T, M and R. For 
simplicity, we assumed that during the re-learning phase, the MB 
learner fully updates the experienced transitions in the transition 
matrix (T) and the SR learner fully updates the successor matrix M. 
However, performance on reward revaluation is not perfect. Could 
this be due to different learning rates for R and T? The re-learning 
phase of experiment 1 included a probe trial once every five trials 
in which participants were required to choose between the second-
level state in either sequence. Participants were unable to progress 
to the test phase until they chose the correct (highest value) state 
three times in a row. A repeated-measures analysis of variance was 
conducted to investigate the effect of revaluation condition (limited 
to reward revaluation trials and transition revaluation trials) on the 
number of trials required to meet the criterion for moving to the 
test phase. There was no significant effect of revaluation condition 
(F1, 924 =  0.549, P =  0.359). Thus, we found no evidence for learning rate 
differences between conditions. Furthermore, the results from the 

policy revaluation condition in experiment 2 show that the findings  
are not merely limited to a difference between reward versus transi-
tion learning, since in policy revaluation there are no changes in the 
transition probabilities (not updating T or SR) and yet the behav-
iour is more similar to transition revaluation rather than reward 
revaluation. Taken together, these findings are consistent with the 
idea that the differences between conditions are not merely due to 
differences in reward learning versus transition learning.

Discussion
The brain must trade off the computational costs of solving complex, 
dynamic decision tasks against the costs of making suboptimal deci-
sions due to employing computational shortcuts. It has, accordingly, 
been argued that compared with MB solutions, simple MF learning 
saves time and computation at the decision time at the cost of occa-
sionally producing maladaptive choices in particular circumstances, 
such as rats working for devalued food. Here, we consider a third 
strategy based on the SR, which is noteworthy for two reasons. First, 
the SR caches temporal abstractions of future states. At the decision 
time, while MB relies on forward search to evaluate actions, the SR 
simply retrieves cached representations of successor states and pro-
duces rapid, flexible behaviours, which in many circumstances were 
previously taken as signatures of the more costly MB deliberation. 
Second, the SR predicts (and our experiments confirmed) a novel 
asymmetric pattern of errors across different types of revaluation 
task. While MB performs equally well on all revaluation tests and 
MF solves none, the SR can use its cached representations to readily 
solve reward revaluation, but not transition or policy revaluation.

Previously, revaluation tasks—mostly reward revaluation—have 
been useful in distinguishing MB from MF predictions. However, 
MB and SR-based algorithms make similar predictions for standard 
reward revaluation tasks, which account for the bulk of evidence 
previously argued to support MB learning. By exploring other vari-
ants of revaluation (transition and policy revaluation), we were 
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Fig. 6 | Schematic of the active sequential learning task. The underlying structure of each condition in experiment 2 is represented. Numbered circles 
denote different states (rooms in a castle), and arrows denote unidirectional actions available upon entering that state and the deterministic transition 
associated with those actions (that flow always from states with lower numbers to higher numbers; top to bottom in the schematic). Unavailable actions 
in states 2 and 3 are not shown. On each trial, participants were placed in one of the six states (castle rooms) and were required to make choices between 
upcoming states until they arrived at a terminal state and collected its reward. For a given phase of a given condition, trials began only in the states that 
are displayed in the figure for that condition and phase. For example, trials in phase 2 of the reward revaluation condition began only from states 4, 5 and 
6. In all conditions, state 1 contained two actions, both of which were always available. States 2 and 3 each contained three actions; however, at any given 
time only two were available. Upon arriving in either state 2 or state 3, the participant observed which actions were available and which were unavailable. 
For each condition, we measured whether participants changed their state 1 action choice between the end of phase 1 and the single probe trial in phase 3 
from the action leading to state 3 to the action leading to state 2.
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able to provide direct empirical support for SR-based algorithms in 
human behaviour. The crucial prediction made by the SR account, 
confirmed in two experiments, was that human participants would 
be more sensitive to changes in reward structure than to changes in 
transition and policy structures. Notably, even in the absence of any 
changes in the transition structure in the policy revaluation condi-
tion, experiment 2 showed that participants were also less sensitive 
to a shift in the optimal policy at intermediate states compared with 
the reward revaluation condition. This is consistent with SR-based 
algorithms but inconsistent with either MB algorithms or accounts 
of different MF–MB arbitration strategies23 following reward versus 
state prediction errors.

It is important to stress that the SR is only one of a number of can-
didates for exact or approximate value computation mechanisms, 
and our study aimed to find affirmative evidence for its use rather 
than to argue that it can explain all choice behaviour on its own. 
Studies using tasks with detour and shortcut manipulations24, par-
ticularly in the spatial domain, are conceptually similar to our tran-
sition revaluation. As in our study, some previous research suggests 
that organisms can in some circumstances also solve these tasks25. 
These results (together with more explicit evidence for step-by-step 
planning in tasks like chess or in evaluating truly novel compound 
concepts like tea jelly2,26) suggest some residual role for fully MB 
computation—or, alternatively, that the brain employs additional 
mechanisms, such as replay-based learning that would achieve the 
same effect20.

To reiterate, although our findings argue against a pure MB 
account (which would handle all our revaluation conditions with 
equal ease, or symmetrically), they also argue against a pure SR 
account, which predicts complete insensitivity to transition and 
policy revaluation (see Figs. 2 and 8). Our data show that people 
display significant revaluation behaviour even in these conditions, 
although less than in the reward revaluation condition. Such results 
are expected under a hybrid SR–MB model in which decision poli-
cies reflect a combination of value estimates from the MB strategy 
and the SR. We demonstrate that this hybrid theory provides a close 
fit to our data. It is best to think of the combination as a rough proxy 
for multi-system interactions, which are probably more complex22 
than what we have sketched here. For instance, although we did not 
formally include or estimate purely MF learning in our modelling 
here, this is only because it predicts equally bad performance across 
all of our experimental revaluation conditions. We do not mean to 
deny the substantial evidence in favour of MF learning in certain 
circumstances, such as after overtraining. Indeed, MF learning may 
contribute to our finding that participants do not achieve 100% 
revaluation performance in any of our conditions, accounting for 
the slight difference between unnecessary switching in the control 
condition (which should measure non-specific sloppiness, such as 
forgetting or choice randomness) and failure to fully adjust in the 
reward revaluation condition (see Figs. 3 and 6).

Insofar as our results suggest that participants rely on a num-
ber of different evaluation strategies, they highlight the question of 
how the brain determines when to rely on each strategy (an arbitra-
tion problem). One general possibility is that humans use a form 
of meta-decision-making, weighing the costs and benefits of extra 
deliberation to determine when to invoke MB computation27–29. 
This basic approach might fruitfully be extended to MB versus SR 
as well as MB versus MF arbitration. A meta-rational agent would 
be expected to mostly use the computationally cheap SR for flex-
ible, goal-directed behaviour (or the even simpler MF strategy for 
automaticity in stable environments), but to sometimes employ the 
more computationally intensive MB strategy to correct the SR-based 
estimate when needed (for example, when transition structure 
changes). Given finite computational resources (and the problem 
that perfectly recognizing the circumstances when MB is required 
is potentially as hard as MB planning itself) this correction could be 

insufficient, leaving a residual trace of the biases induced by the SR. 
Our results on response times in the first experiment may provide a 
hint of such a hybrid strategy, since the MB system should take lon-
ger and might be more likely invoked in the transition revaluation 
condition (where it is actually needed).

Another form of SR hybrid could be realized using the MB 
system (a cognitive map), or episodic memory replay, as a simula-
tor to generate data for training the SR. This resembles the family 
of Dyna algorithms20. Evidence from rodents and human stud-
ies showing that offline replay of sequences during rest and sleep 
enhances memory consolidation30 and learning new trajectories31,32. 
Because the SR is updated via the simulations of the MB system or 
episodic memory offline, this Dyna-like hybrid model retains the 
SR’s advantage of fast action evaluation at the decision time (Fig. 8). 
Updating predictive representations via replay is in line with recent 
attention to the role of memory systems in planning and decision-
making22,33. These different realizations of an SR–MB hybrid are 
essentially speculative in the absence of direct evidence. Further 
work is required to adjudicate between them.

All these models highlight the fact that the SR is itself a sort of 
world model, not entirely unlike the sorts of cognitive maps usu-
ally associated with the hippocampus. The learned representation 
is a predictive model, which allows the mental simulation of distal 
future events rapidly, at least in the aggregate. It differs from the 
one-step model representations learned and used in standard MB 
learning, mainly because it aggregates these predictions over many 
future time steps. This aggregation introduces a new free parameter: 
the timescale over which future events are aggregated. In theory, the 
prediction timescale (known as the ‘planning horizon’) is controlled 
by the discount factor over future state occupancies in equation (1) 
(see Methods), and need not, in general, be the same as the agent’s 
time discount preference over delayed rewards34. Instead, we predict 
(and leave to future work to investigate) that the planning horizon 
should rationally be influenced by the statistical structure of experi-
ence, such as the stability or volatility of transitions and rewards in 
the environment. In other words, the structures of the environment 
should be reflected in the representations that are learned and stored 
in memory35. For instance, in more stable environments, it may be 
rational to cache representations with multi-step contingencies over 
longer planning horizons, compared with volatile environments, 
where transition contingencies change frequently. In the unstable 
case, it would be counterproductive to cache contingencies beyond 
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Fig. 7 | Behavioural performance in a sequential decision task. Proportion 
of participants (n =  88) who changed preference following the re-learning 
phase for reward, transition and policy revaluation as well as the no 
revaluation control condition. The error bars represent 1 standard error of 
the proportion estimate.
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time on the task (trial number) on the revaluation score. Because a 
change in model choice would only affect revaluation scores of non-
control trials, we eliminated control trials from this analysis. For 
experiment 1, this analysis revealed a significant effect of time on 
task on revaluation score (F1, 57.259 =  9.9171, P <  0.01) indicating that 
participants’ ability to perform the task improved over time. If such 
a change in strategy over the task were responsible for the difference 
in revaluation score between reward and transition revaluation con-
ditions, we would expect the effect of trial number on revaluation 
score to interact with the revaluation condition. However, there was 
no significant interaction of this effect with revaluation condition 
(F1, 68.284 =  0.15436, P =  0.695). For experiment 2, there was no sig-
nificant effect of time on task (trial number) on revaluation score 
(F1, 190.6, P =  0.076). There was also no significant interaction of time 
on task with revaluation condition (F2, 69.49, P =  0.367). Thus, time on 
task cannot explain the difference between the conditions.

Possibility 2: differences in learning and updating T, M and R. For 
simplicity, we assumed that during the re-learning phase, the MB 
learner fully updates the experienced transitions in the transition 
matrix (T) and the SR learner fully updates the successor matrix M. 
However, performance on reward revaluation is not perfect. Could 
this be due to different learning rates for R and T? The re-learning 
phase of experiment 1 included a probe trial once every five trials 
in which participants were required to choose between the second-
level state in either sequence. Participants were unable to progress 
to the test phase until they chose the correct (highest value) state 
three times in a row. A repeated-measures analysis of variance was 
conducted to investigate the effect of revaluation condition (limited 
to reward revaluation trials and transition revaluation trials) on the 
number of trials required to meet the criterion for moving to the 
test phase. There was no significant effect of revaluation condition 
(F1, 924 =  0.549, P =  0.359). Thus, we found no evidence for learning rate 
differences between conditions. Furthermore, the results from the 

policy revaluation condition in experiment 2 show that the findings  
are not merely limited to a difference between reward versus transi-
tion learning, since in policy revaluation there are no changes in the 
transition probabilities (not updating T or SR) and yet the behav-
iour is more similar to transition revaluation rather than reward 
revaluation. Taken together, these findings are consistent with the 
idea that the differences between conditions are not merely due to 
differences in reward learning versus transition learning.

Discussion
The brain must trade off the computational costs of solving complex, 
dynamic decision tasks against the costs of making suboptimal deci-
sions due to employing computational shortcuts. It has, accordingly, 
been argued that compared with MB solutions, simple MF learning 
saves time and computation at the decision time at the cost of occa-
sionally producing maladaptive choices in particular circumstances, 
such as rats working for devalued food. Here, we consider a third 
strategy based on the SR, which is noteworthy for two reasons. First, 
the SR caches temporal abstractions of future states. At the decision 
time, while MB relies on forward search to evaluate actions, the SR 
simply retrieves cached representations of successor states and pro-
duces rapid, flexible behaviours, which in many circumstances were 
previously taken as signatures of the more costly MB deliberation. 
Second, the SR predicts (and our experiments confirmed) a novel 
asymmetric pattern of errors across different types of revaluation 
task. While MB performs equally well on all revaluation tests and 
MF solves none, the SR can use its cached representations to readily 
solve reward revaluation, but not transition or policy revaluation.

Previously, revaluation tasks—mostly reward revaluation—have 
been useful in distinguishing MB from MF predictions. However, 
MB and SR-based algorithms make similar predictions for standard 
reward revaluation tasks, which account for the bulk of evidence 
previously argued to support MB learning. By exploring other vari-
ants of revaluation (transition and policy revaluation), we were 
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Fig. 6 | Schematic of the active sequential learning task. The underlying structure of each condition in experiment 2 is represented. Numbered circles 
denote different states (rooms in a castle), and arrows denote unidirectional actions available upon entering that state and the deterministic transition 
associated with those actions (that flow always from states with lower numbers to higher numbers; top to bottom in the schematic). Unavailable actions 
in states 2 and 3 are not shown. On each trial, participants were placed in one of the six states (castle rooms) and were required to make choices between 
upcoming states until they arrived at a terminal state and collected its reward. For a given phase of a given condition, trials began only in the states that 
are displayed in the figure for that condition and phase. For example, trials in phase 2 of the reward revaluation condition began only from states 4, 5 and 
6. In all conditions, state 1 contained two actions, both of which were always available. States 2 and 3 each contained three actions; however, at any given 
time only two were available. Upon arriving in either state 2 or state 3, the participant observed which actions were available and which were unavailable. 
For each condition, we measured whether participants changed their state 1 action choice between the end of phase 1 and the single probe trial in phase 3 
from the action leading to state 3 to the action leading to state 2.
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able to provide direct empirical support for SR-based algorithms in 
human behaviour. The crucial prediction made by the SR account, 
confirmed in two experiments, was that human participants would 
be more sensitive to changes in reward structure than to changes in 
transition and policy structures. Notably, even in the absence of any 
changes in the transition structure in the policy revaluation condi-
tion, experiment 2 showed that participants were also less sensitive 
to a shift in the optimal policy at intermediate states compared with 
the reward revaluation condition. This is consistent with SR-based 
algorithms but inconsistent with either MB algorithms or accounts 
of different MF–MB arbitration strategies23 following reward versus 
state prediction errors.

It is important to stress that the SR is only one of a number of can-
didates for exact or approximate value computation mechanisms, 
and our study aimed to find affirmative evidence for its use rather 
than to argue that it can explain all choice behaviour on its own. 
Studies using tasks with detour and shortcut manipulations24, par-
ticularly in the spatial domain, are conceptually similar to our tran-
sition revaluation. As in our study, some previous research suggests 
that organisms can in some circumstances also solve these tasks25. 
These results (together with more explicit evidence for step-by-step 
planning in tasks like chess or in evaluating truly novel compound 
concepts like tea jelly2,26) suggest some residual role for fully MB 
computation—or, alternatively, that the brain employs additional 
mechanisms, such as replay-based learning that would achieve the 
same effect20.

To reiterate, although our findings argue against a pure MB 
account (which would handle all our revaluation conditions with 
equal ease, or symmetrically), they also argue against a pure SR 
account, which predicts complete insensitivity to transition and 
policy revaluation (see Figs. 2 and 8). Our data show that people 
display significant revaluation behaviour even in these conditions, 
although less than in the reward revaluation condition. Such results 
are expected under a hybrid SR–MB model in which decision poli-
cies reflect a combination of value estimates from the MB strategy 
and the SR. We demonstrate that this hybrid theory provides a close 
fit to our data. It is best to think of the combination as a rough proxy 
for multi-system interactions, which are probably more complex22 
than what we have sketched here. For instance, although we did not 
formally include or estimate purely MF learning in our modelling 
here, this is only because it predicts equally bad performance across 
all of our experimental revaluation conditions. We do not mean to 
deny the substantial evidence in favour of MF learning in certain 
circumstances, such as after overtraining. Indeed, MF learning may 
contribute to our finding that participants do not achieve 100% 
revaluation performance in any of our conditions, accounting for 
the slight difference between unnecessary switching in the control 
condition (which should measure non-specific sloppiness, such as 
forgetting or choice randomness) and failure to fully adjust in the 
reward revaluation condition (see Figs. 3 and 6).

Insofar as our results suggest that participants rely on a num-
ber of different evaluation strategies, they highlight the question of 
how the brain determines when to rely on each strategy (an arbitra-
tion problem). One general possibility is that humans use a form 
of meta-decision-making, weighing the costs and benefits of extra 
deliberation to determine when to invoke MB computation27–29. 
This basic approach might fruitfully be extended to MB versus SR 
as well as MB versus MF arbitration. A meta-rational agent would 
be expected to mostly use the computationally cheap SR for flex-
ible, goal-directed behaviour (or the even simpler MF strategy for 
automaticity in stable environments), but to sometimes employ the 
more computationally intensive MB strategy to correct the SR-based 
estimate when needed (for example, when transition structure 
changes). Given finite computational resources (and the problem 
that perfectly recognizing the circumstances when MB is required 
is potentially as hard as MB planning itself) this correction could be 

insufficient, leaving a residual trace of the biases induced by the SR. 
Our results on response times in the first experiment may provide a 
hint of such a hybrid strategy, since the MB system should take lon-
ger and might be more likely invoked in the transition revaluation 
condition (where it is actually needed).

Another form of SR hybrid could be realized using the MB 
system (a cognitive map), or episodic memory replay, as a simula-
tor to generate data for training the SR. This resembles the family 
of Dyna algorithms20. Evidence from rodents and human stud-
ies showing that offline replay of sequences during rest and sleep 
enhances memory consolidation30 and learning new trajectories31,32. 
Because the SR is updated via the simulations of the MB system or 
episodic memory offline, this Dyna-like hybrid model retains the 
SR’s advantage of fast action evaluation at the decision time (Fig. 8). 
Updating predictive representations via replay is in line with recent 
attention to the role of memory systems in planning and decision-
making22,33. These different realizations of an SR–MB hybrid are 
essentially speculative in the absence of direct evidence. Further 
work is required to adjudicate between them.

All these models highlight the fact that the SR is itself a sort of 
world model, not entirely unlike the sorts of cognitive maps usu-
ally associated with the hippocampus. The learned representation 
is a predictive model, which allows the mental simulation of distal 
future events rapidly, at least in the aggregate. It differs from the 
one-step model representations learned and used in standard MB 
learning, mainly because it aggregates these predictions over many 
future time steps. This aggregation introduces a new free parameter: 
the timescale over which future events are aggregated. In theory, the 
prediction timescale (known as the ‘planning horizon’) is controlled 
by the discount factor over future state occupancies in equation (1) 
(see Methods), and need not, in general, be the same as the agent’s 
time discount preference over delayed rewards34. Instead, we predict 
(and leave to future work to investigate) that the planning horizon 
should rationally be influenced by the statistical structure of experi-
ence, such as the stability or volatility of transitions and rewards in 
the environment. In other words, the structures of the environment 
should be reflected in the representations that are learned and stored 
in memory35. For instance, in more stable environments, it may be 
rational to cache representations with multi-step contingencies over 
longer planning horizons, compared with volatile environments, 
where transition contingencies change frequently. In the unstable 
case, it would be counterproductive to cache contingencies beyond 
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Fig. 7 | Behavioural performance in a sequential decision task. Proportion 
of participants (n =  88) who changed preference following the re-learning 
phase for reward, transition and policy revaluation as well as the no 
revaluation control condition. The error bars represent 1 standard error of 
the proportion estimate.
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time on the task (trial number) on the revaluation score. Because a 
change in model choice would only affect revaluation scores of non-
control trials, we eliminated control trials from this analysis. For 
experiment 1, this analysis revealed a significant effect of time on 
task on revaluation score (F1, 57.259 =  9.9171, P <  0.01) indicating that 
participants’ ability to perform the task improved over time. If such 
a change in strategy over the task were responsible for the difference 
in revaluation score between reward and transition revaluation con-
ditions, we would expect the effect of trial number on revaluation 
score to interact with the revaluation condition. However, there was 
no significant interaction of this effect with revaluation condition 
(F1, 68.284 =  0.15436, P =  0.695). For experiment 2, there was no sig-
nificant effect of time on task (trial number) on revaluation score 
(F1, 190.6, P =  0.076). There was also no significant interaction of time 
on task with revaluation condition (F2, 69.49, P =  0.367). Thus, time on 
task cannot explain the difference between the conditions.

Possibility 2: differences in learning and updating T, M and R. For 
simplicity, we assumed that during the re-learning phase, the MB 
learner fully updates the experienced transitions in the transition 
matrix (T) and the SR learner fully updates the successor matrix M. 
However, performance on reward revaluation is not perfect. Could 
this be due to different learning rates for R and T? The re-learning 
phase of experiment 1 included a probe trial once every five trials 
in which participants were required to choose between the second-
level state in either sequence. Participants were unable to progress 
to the test phase until they chose the correct (highest value) state 
three times in a row. A repeated-measures analysis of variance was 
conducted to investigate the effect of revaluation condition (limited 
to reward revaluation trials and transition revaluation trials) on the 
number of trials required to meet the criterion for moving to the 
test phase. There was no significant effect of revaluation condition 
(F1, 924 =  0.549, P =  0.359). Thus, we found no evidence for learning rate 
differences between conditions. Furthermore, the results from the 

policy revaluation condition in experiment 2 show that the findings  
are not merely limited to a difference between reward versus transi-
tion learning, since in policy revaluation there are no changes in the 
transition probabilities (not updating T or SR) and yet the behav-
iour is more similar to transition revaluation rather than reward 
revaluation. Taken together, these findings are consistent with the 
idea that the differences between conditions are not merely due to 
differences in reward learning versus transition learning.

Discussion
The brain must trade off the computational costs of solving complex, 
dynamic decision tasks against the costs of making suboptimal deci-
sions due to employing computational shortcuts. It has, accordingly, 
been argued that compared with MB solutions, simple MF learning 
saves time and computation at the decision time at the cost of occa-
sionally producing maladaptive choices in particular circumstances, 
such as rats working for devalued food. Here, we consider a third 
strategy based on the SR, which is noteworthy for two reasons. First, 
the SR caches temporal abstractions of future states. At the decision 
time, while MB relies on forward search to evaluate actions, the SR 
simply retrieves cached representations of successor states and pro-
duces rapid, flexible behaviours, which in many circumstances were 
previously taken as signatures of the more costly MB deliberation. 
Second, the SR predicts (and our experiments confirmed) a novel 
asymmetric pattern of errors across different types of revaluation 
task. While MB performs equally well on all revaluation tests and 
MF solves none, the SR can use its cached representations to readily 
solve reward revaluation, but not transition or policy revaluation.

Previously, revaluation tasks—mostly reward revaluation—have 
been useful in distinguishing MB from MF predictions. However, 
MB and SR-based algorithms make similar predictions for standard 
reward revaluation tasks, which account for the bulk of evidence 
previously argued to support MB learning. By exploring other vari-
ants of revaluation (transition and policy revaluation), we were 
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Fig. 6 | Schematic of the active sequential learning task. The underlying structure of each condition in experiment 2 is represented. Numbered circles 
denote different states (rooms in a castle), and arrows denote unidirectional actions available upon entering that state and the deterministic transition 
associated with those actions (that flow always from states with lower numbers to higher numbers; top to bottom in the schematic). Unavailable actions 
in states 2 and 3 are not shown. On each trial, participants were placed in one of the six states (castle rooms) and were required to make choices between 
upcoming states until they arrived at a terminal state and collected its reward. For a given phase of a given condition, trials began only in the states that 
are displayed in the figure for that condition and phase. For example, trials in phase 2 of the reward revaluation condition began only from states 4, 5 and 
6. In all conditions, state 1 contained two actions, both of which were always available. States 2 and 3 each contained three actions; however, at any given 
time only two were available. Upon arriving in either state 2 or state 3, the participant observed which actions were available and which were unavailable. 
For each condition, we measured whether participants changed their state 1 action choice between the end of phase 1 and the single probe trial in phase 3 
from the action leading to state 3 to the action leading to state 2.
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able to provide direct empirical support for SR-based algorithms in 
human behaviour. The crucial prediction made by the SR account, 
confirmed in two experiments, was that human participants would 
be more sensitive to changes in reward structure than to changes in 
transition and policy structures. Notably, even in the absence of any 
changes in the transition structure in the policy revaluation condi-
tion, experiment 2 showed that participants were also less sensitive 
to a shift in the optimal policy at intermediate states compared with 
the reward revaluation condition. This is consistent with SR-based 
algorithms but inconsistent with either MB algorithms or accounts 
of different MF–MB arbitration strategies23 following reward versus 
state prediction errors.

It is important to stress that the SR is only one of a number of can-
didates for exact or approximate value computation mechanisms, 
and our study aimed to find affirmative evidence for its use rather 
than to argue that it can explain all choice behaviour on its own. 
Studies using tasks with detour and shortcut manipulations24, par-
ticularly in the spatial domain, are conceptually similar to our tran-
sition revaluation. As in our study, some previous research suggests 
that organisms can in some circumstances also solve these tasks25. 
These results (together with more explicit evidence for step-by-step 
planning in tasks like chess or in evaluating truly novel compound 
concepts like tea jelly2,26) suggest some residual role for fully MB 
computation—or, alternatively, that the brain employs additional 
mechanisms, such as replay-based learning that would achieve the 
same effect20.

To reiterate, although our findings argue against a pure MB 
account (which would handle all our revaluation conditions with 
equal ease, or symmetrically), they also argue against a pure SR 
account, which predicts complete insensitivity to transition and 
policy revaluation (see Figs. 2 and 8). Our data show that people 
display significant revaluation behaviour even in these conditions, 
although less than in the reward revaluation condition. Such results 
are expected under a hybrid SR–MB model in which decision poli-
cies reflect a combination of value estimates from the MB strategy 
and the SR. We demonstrate that this hybrid theory provides a close 
fit to our data. It is best to think of the combination as a rough proxy 
for multi-system interactions, which are probably more complex22 
than what we have sketched here. For instance, although we did not 
formally include or estimate purely MF learning in our modelling 
here, this is only because it predicts equally bad performance across 
all of our experimental revaluation conditions. We do not mean to 
deny the substantial evidence in favour of MF learning in certain 
circumstances, such as after overtraining. Indeed, MF learning may 
contribute to our finding that participants do not achieve 100% 
revaluation performance in any of our conditions, accounting for 
the slight difference between unnecessary switching in the control 
condition (which should measure non-specific sloppiness, such as 
forgetting or choice randomness) and failure to fully adjust in the 
reward revaluation condition (see Figs. 3 and 6).

Insofar as our results suggest that participants rely on a num-
ber of different evaluation strategies, they highlight the question of 
how the brain determines when to rely on each strategy (an arbitra-
tion problem). One general possibility is that humans use a form 
of meta-decision-making, weighing the costs and benefits of extra 
deliberation to determine when to invoke MB computation27–29. 
This basic approach might fruitfully be extended to MB versus SR 
as well as MB versus MF arbitration. A meta-rational agent would 
be expected to mostly use the computationally cheap SR for flex-
ible, goal-directed behaviour (or the even simpler MF strategy for 
automaticity in stable environments), but to sometimes employ the 
more computationally intensive MB strategy to correct the SR-based 
estimate when needed (for example, when transition structure 
changes). Given finite computational resources (and the problem 
that perfectly recognizing the circumstances when MB is required 
is potentially as hard as MB planning itself) this correction could be 

insufficient, leaving a residual trace of the biases induced by the SR. 
Our results on response times in the first experiment may provide a 
hint of such a hybrid strategy, since the MB system should take lon-
ger and might be more likely invoked in the transition revaluation 
condition (where it is actually needed).

Another form of SR hybrid could be realized using the MB 
system (a cognitive map), or episodic memory replay, as a simula-
tor to generate data for training the SR. This resembles the family 
of Dyna algorithms20. Evidence from rodents and human stud-
ies showing that offline replay of sequences during rest and sleep 
enhances memory consolidation30 and learning new trajectories31,32. 
Because the SR is updated via the simulations of the MB system or 
episodic memory offline, this Dyna-like hybrid model retains the 
SR’s advantage of fast action evaluation at the decision time (Fig. 8). 
Updating predictive representations via replay is in line with recent 
attention to the role of memory systems in planning and decision-
making22,33. These different realizations of an SR–MB hybrid are 
essentially speculative in the absence of direct evidence. Further 
work is required to adjudicate between them.

All these models highlight the fact that the SR is itself a sort of 
world model, not entirely unlike the sorts of cognitive maps usu-
ally associated with the hippocampus. The learned representation 
is a predictive model, which allows the mental simulation of distal 
future events rapidly, at least in the aggregate. It differs from the 
one-step model representations learned and used in standard MB 
learning, mainly because it aggregates these predictions over many 
future time steps. This aggregation introduces a new free parameter: 
the timescale over which future events are aggregated. In theory, the 
prediction timescale (known as the ‘planning horizon’) is controlled 
by the discount factor over future state occupancies in equation (1) 
(see Methods), and need not, in general, be the same as the agent’s 
time discount preference over delayed rewards34. Instead, we predict 
(and leave to future work to investigate) that the planning horizon 
should rationally be influenced by the statistical structure of experi-
ence, such as the stability or volatility of transitions and rewards in 
the environment. In other words, the structures of the environment 
should be reflected in the representations that are learned and stored 
in memory35. For instance, in more stable environments, it may be 
rational to cache representations with multi-step contingencies over 
longer planning horizons, compared with volatile environments, 
where transition contingencies change frequently. In the unstable 
case, it would be counterproductive to cache contingencies beyond 
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Fig. 7 | Behavioural performance in a sequential decision task. Proportion 
of participants (n =  88) who changed preference following the re-learning 
phase for reward, transition and policy revaluation as well as the no 
revaluation control condition. The error bars represent 1 standard error of 
the proportion estimate.
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time on the task (trial number) on the revaluation score. Because a 
change in model choice would only affect revaluation scores of non-
control trials, we eliminated control trials from this analysis. For 
experiment 1, this analysis revealed a significant effect of time on 
task on revaluation score (F1, 57.259 =  9.9171, P <  0.01) indicating that 
participants’ ability to perform the task improved over time. If such 
a change in strategy over the task were responsible for the difference 
in revaluation score between reward and transition revaluation con-
ditions, we would expect the effect of trial number on revaluation 
score to interact with the revaluation condition. However, there was 
no significant interaction of this effect with revaluation condition 
(F1, 68.284 =  0.15436, P =  0.695). For experiment 2, there was no sig-
nificant effect of time on task (trial number) on revaluation score 
(F1, 190.6, P =  0.076). There was also no significant interaction of time 
on task with revaluation condition (F2, 69.49, P =  0.367). Thus, time on 
task cannot explain the difference between the conditions.

Possibility 2: differences in learning and updating T, M and R. For 
simplicity, we assumed that during the re-learning phase, the MB 
learner fully updates the experienced transitions in the transition 
matrix (T) and the SR learner fully updates the successor matrix M. 
However, performance on reward revaluation is not perfect. Could 
this be due to different learning rates for R and T? The re-learning 
phase of experiment 1 included a probe trial once every five trials 
in which participants were required to choose between the second-
level state in either sequence. Participants were unable to progress 
to the test phase until they chose the correct (highest value) state 
three times in a row. A repeated-measures analysis of variance was 
conducted to investigate the effect of revaluation condition (limited 
to reward revaluation trials and transition revaluation trials) on the 
number of trials required to meet the criterion for moving to the 
test phase. There was no significant effect of revaluation condition 
(F1, 924 =  0.549, P =  0.359). Thus, we found no evidence for learning rate 
differences between conditions. Furthermore, the results from the 

policy revaluation condition in experiment 2 show that the findings  
are not merely limited to a difference between reward versus transi-
tion learning, since in policy revaluation there are no changes in the 
transition probabilities (not updating T or SR) and yet the behav-
iour is more similar to transition revaluation rather than reward 
revaluation. Taken together, these findings are consistent with the 
idea that the differences between conditions are not merely due to 
differences in reward learning versus transition learning.

Discussion
The brain must trade off the computational costs of solving complex, 
dynamic decision tasks against the costs of making suboptimal deci-
sions due to employing computational shortcuts. It has, accordingly, 
been argued that compared with MB solutions, simple MF learning 
saves time and computation at the decision time at the cost of occa-
sionally producing maladaptive choices in particular circumstances, 
such as rats working for devalued food. Here, we consider a third 
strategy based on the SR, which is noteworthy for two reasons. First, 
the SR caches temporal abstractions of future states. At the decision 
time, while MB relies on forward search to evaluate actions, the SR 
simply retrieves cached representations of successor states and pro-
duces rapid, flexible behaviours, which in many circumstances were 
previously taken as signatures of the more costly MB deliberation. 
Second, the SR predicts (and our experiments confirmed) a novel 
asymmetric pattern of errors across different types of revaluation 
task. While MB performs equally well on all revaluation tests and 
MF solves none, the SR can use its cached representations to readily 
solve reward revaluation, but not transition or policy revaluation.

Previously, revaluation tasks—mostly reward revaluation—have 
been useful in distinguishing MB from MF predictions. However, 
MB and SR-based algorithms make similar predictions for standard 
reward revaluation tasks, which account for the bulk of evidence 
previously argued to support MB learning. By exploring other vari-
ants of revaluation (transition and policy revaluation), we were 

$0$15 $30

4 5

$0$45

6

$30

$0$15 $30 $15$0 $30 $0$15 $30

4

3

5
$0$15

6
$30

4 5
$15$45

6
$30

4 5
$0$15

6
$45

2

4

3

5 6

1

2

4

3

5 6

1

2

4

3

5 6

1

2

4

3

5 6

1

2

1111

Ph
as

e 
1:

le
ar

ni
ng

 
Ph

as
e 

2:
re

-le
ar

ni
ng

Ph
as

e 
3:

te
st

Reward revaluation Transition revaluation Policy revaluation Control
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associated with those actions (that flow always from states with lower numbers to higher numbers; top to bottom in the schematic). Unavailable actions 
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6. In all conditions, state 1 contained two actions, both of which were always available. States 2 and 3 each contained three actions; however, at any given 
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able to provide direct empirical support for SR-based algorithms in 
human behaviour. The crucial prediction made by the SR account, 
confirmed in two experiments, was that human participants would 
be more sensitive to changes in reward structure than to changes in 
transition and policy structures. Notably, even in the absence of any 
changes in the transition structure in the policy revaluation condi-
tion, experiment 2 showed that participants were also less sensitive 
to a shift in the optimal policy at intermediate states compared with 
the reward revaluation condition. This is consistent with SR-based 
algorithms but inconsistent with either MB algorithms or accounts 
of different MF–MB arbitration strategies23 following reward versus 
state prediction errors.

It is important to stress that the SR is only one of a number of can-
didates for exact or approximate value computation mechanisms, 
and our study aimed to find affirmative evidence for its use rather 
than to argue that it can explain all choice behaviour on its own. 
Studies using tasks with detour and shortcut manipulations24, par-
ticularly in the spatial domain, are conceptually similar to our tran-
sition revaluation. As in our study, some previous research suggests 
that organisms can in some circumstances also solve these tasks25. 
These results (together with more explicit evidence for step-by-step 
planning in tasks like chess or in evaluating truly novel compound 
concepts like tea jelly2,26) suggest some residual role for fully MB 
computation—or, alternatively, that the brain employs additional 
mechanisms, such as replay-based learning that would achieve the 
same effect20.

To reiterate, although our findings argue against a pure MB 
account (which would handle all our revaluation conditions with 
equal ease, or symmetrically), they also argue against a pure SR 
account, which predicts complete insensitivity to transition and 
policy revaluation (see Figs. 2 and 8). Our data show that people 
display significant revaluation behaviour even in these conditions, 
although less than in the reward revaluation condition. Such results 
are expected under a hybrid SR–MB model in which decision poli-
cies reflect a combination of value estimates from the MB strategy 
and the SR. We demonstrate that this hybrid theory provides a close 
fit to our data. It is best to think of the combination as a rough proxy 
for multi-system interactions, which are probably more complex22 
than what we have sketched here. For instance, although we did not 
formally include or estimate purely MF learning in our modelling 
here, this is only because it predicts equally bad performance across 
all of our experimental revaluation conditions. We do not mean to 
deny the substantial evidence in favour of MF learning in certain 
circumstances, such as after overtraining. Indeed, MF learning may 
contribute to our finding that participants do not achieve 100% 
revaluation performance in any of our conditions, accounting for 
the slight difference between unnecessary switching in the control 
condition (which should measure non-specific sloppiness, such as 
forgetting or choice randomness) and failure to fully adjust in the 
reward revaluation condition (see Figs. 3 and 6).

Insofar as our results suggest that participants rely on a num-
ber of different evaluation strategies, they highlight the question of 
how the brain determines when to rely on each strategy (an arbitra-
tion problem). One general possibility is that humans use a form 
of meta-decision-making, weighing the costs and benefits of extra 
deliberation to determine when to invoke MB computation27–29. 
This basic approach might fruitfully be extended to MB versus SR 
as well as MB versus MF arbitration. A meta-rational agent would 
be expected to mostly use the computationally cheap SR for flex-
ible, goal-directed behaviour (or the even simpler MF strategy for 
automaticity in stable environments), but to sometimes employ the 
more computationally intensive MB strategy to correct the SR-based 
estimate when needed (for example, when transition structure 
changes). Given finite computational resources (and the problem 
that perfectly recognizing the circumstances when MB is required 
is potentially as hard as MB planning itself) this correction could be 

insufficient, leaving a residual trace of the biases induced by the SR. 
Our results on response times in the first experiment may provide a 
hint of such a hybrid strategy, since the MB system should take lon-
ger and might be more likely invoked in the transition revaluation 
condition (where it is actually needed).

Another form of SR hybrid could be realized using the MB 
system (a cognitive map), or episodic memory replay, as a simula-
tor to generate data for training the SR. This resembles the family 
of Dyna algorithms20. Evidence from rodents and human stud-
ies showing that offline replay of sequences during rest and sleep 
enhances memory consolidation30 and learning new trajectories31,32. 
Because the SR is updated via the simulations of the MB system or 
episodic memory offline, this Dyna-like hybrid model retains the 
SR’s advantage of fast action evaluation at the decision time (Fig. 8). 
Updating predictive representations via replay is in line with recent 
attention to the role of memory systems in planning and decision-
making22,33. These different realizations of an SR–MB hybrid are 
essentially speculative in the absence of direct evidence. Further 
work is required to adjudicate between them.

All these models highlight the fact that the SR is itself a sort of 
world model, not entirely unlike the sorts of cognitive maps usu-
ally associated with the hippocampus. The learned representation 
is a predictive model, which allows the mental simulation of distal 
future events rapidly, at least in the aggregate. It differs from the 
one-step model representations learned and used in standard MB 
learning, mainly because it aggregates these predictions over many 
future time steps. This aggregation introduces a new free parameter: 
the timescale over which future events are aggregated. In theory, the 
prediction timescale (known as the ‘planning horizon’) is controlled 
by the discount factor over future state occupancies in equation (1) 
(see Methods), and need not, in general, be the same as the agent’s 
time discount preference over delayed rewards34. Instead, we predict 
(and leave to future work to investigate) that the planning horizon 
should rationally be influenced by the statistical structure of experi-
ence, such as the stability or volatility of transitions and rewards in 
the environment. In other words, the structures of the environment 
should be reflected in the representations that are learned and stored 
in memory35. For instance, in more stable environments, it may be 
rational to cache representations with multi-step contingencies over 
longer planning horizons, compared with volatile environments, 
where transition contingencies change frequently. In the unstable 
case, it would be counterproductive to cache contingencies beyond 
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Fig. 7 | Behavioural performance in a sequential decision task. Proportion 
of participants (n =  88) who changed preference following the re-learning 
phase for reward, transition and policy revaluation as well as the no 
revaluation control condition. The error bars represent 1 standard error of 
the proportion estimate.
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